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Abstract

Predictability of seasonal climate variations associated with ENSO suggests a potential to
reduce farm risk by tailoring agricultural management strategies to mitigate the impacts of
adverse conditions or to take advantage of favorable conditions. Federal farm policies may
enhance or limit the usefulness of this climate information. A representative peanut–cotton–
corn non-irrigated North Florida farm was used to estimate the value of the ENSO-based cli-
mate information and examine impacts of farm programs under uncertain conditions of cli-
mate, prices, and risk aversion levels. Yields from crop model simulations and historical
series of prices were used to generate stochastic distributions that were fed into a whole farm
model, first, to optimize crop selection and planting dates, and then, to simulate uncertain out-
comes under risk aversion, with and without the use of climate information, and with and
without the inclusion of farm programs. Results suggest that seasonal climate forecasts have
higher value for more risk averse farmers when La Niña or El Niño ENSO phases are forecast.
Highly risk averse farmers could benefit from the forecast by taking advantage of potential
favorable conditions (offensive responses). The inclusion of Commodity Loan Programs
(CLP) and Crop Insurance Programs (CIP) decreased the overall value of the forecast
information even to negative levels. However, more risk averse farmers could still benefit
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moderately from El Niño and marginally from La Niña forecasts when they participate in
CLP and CIP.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Major improvements in climate predictions related to the phenomenon known as
El Niño-Southern Oscillation (ENSO) call for studies to estimate the value of this
technology and its potential uses to reduce farm risks (Podestá et al., 2002; Phillips
et al., 2002). The agricultural sector, among the most vulnerable to climate changes,
can use seasonal forecasts to mitigate the impacts of adverse conditions or to take
advantage of favorable conditions (Bert et al., 2006; Jagtap et al., 2002; Chen
et al., 2002). However, farm decisions do not occur in isolation and may be influ-
enced by decision making institutions such as federal farm policies and regulations
that may enhance or limit the usefulness of this climate information (Hansen, 2002).

Several studies have previously estimated the value of agricultural forecasts (Let-
son et al., 2005; Meza and Wilks, 2003; Hammer et al., 2001), but only a few have
included the impacts of government institutions on the value of the seasonal fore-
casts (Mjelde and Hill, 1999; Mjelde et al., 1996; Bosch, 1984). Mjelde et al.
(1996) remains the state of the art analysis on how farm programs might influence
the value of climate information; but since that time, farm legislation has undergone
substantial changes, and researchers have learned much about how to estimate the
value of climate information. The use of biophysical crop simulation models together
with stochastic weather generators to characterize ENSO intra-phase variations and
confidence intervals have played a major role in recent years.

Synergies or conflicts between farm programs and climate information represent a
critical knowledge gap in how we should think about climate forecast value. Farm
programs condition the use of climate information in a variety of ways. They limit
the range and efficacy of forecast responses since farm programs may restrict the
crops farmers can grow and how they may grow them. In addition, farm programs
alter the riskiness of decision environments since they (are intended to) reduce the
variability of farming incomes.

The objective of this study is to estimate the impacts of farm programs on the
value of ENSO forecasts in a rainfed peanut–cotton–corn farm in Jackson County,
Florida. We tested the hypothesis that government interventions might enhance or
limit the usefulness of the climate information. This study expands the framework
used by Letson et al. (2005) by including the impacts of government farm programs
into the estimations of the forecast value. We define forecast value or risk adjusted
net income as the monetary amount of change (i.e., US$ ha�1) in the net income
resulting from incorporating seasonal climate forecast information and risk aversion
levels in farm decision making.
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2. Materials and methods

2.1. Location and climatic characteristics

The study was conducted on a representative 130 ha rainfed farm in Jackson
County, FL that grows peanut, cotton, and maize in soil type Dothan Loamy Sand.
We selected this specific case study because it has similarities in environment (e.g.,
climate, soils), resources (e.g., farm size, crops grown), and technology (e.g., rainfed
agriculture) to other major agricultural production areas in the Southeastern United
States, which would suggest a broader relevance of our findings.

El Niño Southern Oscillation or ENSO is a phenomenon characterized by
changes in the sea surface temperature of the equatorial Pacific Ocean that affects
the atmosphere and cause seasonal climate variations around the globe (Ropelewski
and Halpert, 1986). In Florida, rainfall is highly sensitive to ENSO phases with an
average excess of about 40% of the normal rainfall across most of the state during
an El Nino year, with deficits of about 30% lasting during a La Nina year (Jagtap
et al., 2002). Florida also has average temperatures 1–2 �C below normal during
El Nino years, whereas La Nina brings temperatures 1–2 �C above normal during
winter months (Jagtap et al., 2002). Hansen et al. (1998a,b, 1999) and Mavromatis
et al. (2002) have found that ENSO influenced yields of most of the crops in Florida.

The weather station at Chipley (30.783N, 85.483W) was used as representative for
Jackson Co., which presented 1143 mm of rainfall and 21.7 �C of mean temperature
during the growing season (February–November). ENSO phases influence precipita-
tion and to a lesser extent temperature in Jackson Co. In general, higher precipita-
tion levels and lower temperatures are observed during El Niño years, especially
before planting. During La Niña years, the opposite is observed (Fig. 1).

2.2. The Jackson climate risk assessment model

We integrated climatic, agronomic, economic, and policy components (Fig. 2) in a
farm decision model. This model first optimizes management practices with and
without forecasts and with and without farm programs, and then simulates net mar-
gins over long periods of time.

To test our hypothesis that Federal farm policies may enhance or limit the useful-
ness of the climate information (Mjelde et al., 1996) we introduced two farm pro-
grams consisting of Commodity Loan Programs (CLP) and Crop Insurance
Programs (CIP). The CLP included loan deficiency payments (LDP) and marketing
loan benefits (MLB), while the CIP included multi-peril crop insurance (MPCI) and
crop revenue coverage (CRC). In the study area, LDP are available for cotton and
MLB are available for peanut and maize. Also, MPCI is available for the three
crops, but CRC is only available for cotton and maize.

2.2.1. Agronomic component

2.2.1.1. Crops yield simulation by ENSO phase. The longest historical daily weather
record (including rainfall, Tmax, Tmin, and irradiation) representative for Jackson
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Fig. 1. Historical (1950–2004) monthly rainfall in Jackson County, FL for El Niño and La Niña ENSO
phases with respect to all years. Source: www.AgClimate.org.
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County is 65 years (1939–2003) from the weather station at Chipley. During this per-
iod of time, 14 years were El Niño and 16 La Niña (Table 1) as defined by Mavro-
matis et al. (2002). For detailed climate information used in this study, please refer to
www.AgClimate.org.

These weather series were used to simulate and classify crop yields of peanut, cot-
ton, and maize by ENSO phase. Crops yields were simulated using models in the
Decision Support System for Agrotechnology Transfer v4.0 (Jones et al., 2003).
We adjusted outcomes from crop model simulations to produce yields with a mean
reported by local informants (kg ha�1): 3360 for peanut (J. Marois, Researcher,
North Florida Research and Education Center, Quincy, personal communication,
22 October, 2004), 730 for cotton, and 6270 for maize (J. Smith, Statistician, North
Florida Research and Education Center, Quincy, personal communication, 23
November, 2004). Crop model simulations contemplated contemporary manage-
ment practices in the region for varieties, fertilization, and planting dates (H.E. Jow-
ers, Co. Extension Director IV, Jackson Co. Extension Office, Marianna; personal
communication, 28 October, 2004); and the representative soil type Dothan Loamy
Sand. For peanut we used the most popular variety in the area, Georgia Green (Uni-
versity of Georgia), a Runner type market variety with medium maturity and mod-
erate resistance to late tomato spotted wilt virus (TSWV) and to cylindricladium
black rot (CBR). For cotton, we used a popular medium to full season Delta & Pine
Land� (DP) variety. And for maize we used a common McCurdy 84aa, a medium to
full season variety similar to brand name varieties of Monsanto� (Dekalb) or
Pioneer�.

http://www.AgClimate.org
http://www.AgClimate.org


Fig. 2. Simulation framework. Climatic, agronomic, economic, and policy components of the Jackson
model (adapted from Letson et al. (2005), pg. 168). Note: EVOI is the estimated value of the information.

Table 1
ENSO phases during the period 1939–2003

El Niño La Niña

1941 1977 1939 1968
1952 1983 1943 1971
1958 1987 1945 1972
1964 1988 1950 1974
1966 1992 1955 1976
1970 1998 1956 1989
1973 2003 1957 1999

1965 2000
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Nitrogen fertilization was used according to local information, 10 kg at planting
for peanut, 110 kg in two applications for cotton, and 135 kg in 3 applications for
maize. Peanut was planted between mid-April and mid-June, cotton was planted
between mid-April to early-May, and maize was planted between mid-February
and mid-April (Table 2). Nine planting dates (about one-week apart) were included
for peanut and maize, and four planting dates were included for cotton.



Table 2
Crops, varieties, planting dates and synthetic yields

Crop/variety Code Planting date Synthetic yields (kg ha�1)

All years El Niño Neutral La Niña

Mean STD Mean STD Mean STD Mean STD

Peanut/Georgia
Green

m1 16 April 3078 1275 2918 1308 3261 1507 3055 916
m2 23 April 3150 1276 3077 1339 3151 1471 3221 961
m3 1 May 3217 1272 3150 1232 3202 1474 3298 1076
m4 8 May 3332 1318 3303 1235 3338 1430 3356 1282
m5 15 May 3360 1225 3313 1146 3278 1257 3489 1260
m6 22 May 3361 1210 3390 1064 3352 1248 3341 1305
m7 29 May 3373 1266 3402 1224 3371 1201 3346 1368
m8 5 June 3341 1327 3440 1389 3288 1238 3296 1344
m9 12 June 2956 1477 3008 1613 2982 1376 2877 1429

Cotton/Delta &
Pine Land

m10 16 April 720 78 720 78 729 84 711 69
m11 23 April 717 81 707 79 736 80 709 81
m12 1 May 714 84 699 89 733 70 711 89
m13 8 May 715 76 696 60 727 72 722 89

Maize/
McCurdy
84aa

m14 15 February 5253 1708 4437 1190 5671 2040 5651 1475
m15 22 February 5953 2097 5767 2078 5869 2218 6223 1963
m16 1 March 5877 2099 5698 2162 6316 1685 5618 2327
m17 8 March 6163 2109 5836 2280 6787 2125 5864 1745
m18 15 March 6471 2085 6043 2427 6836 1966 6534 1727
m19 22 March 6454 1988 6168 2294 6704 1894 6489 1692
m20 29 March 6510 1874 6181 2228 6582 1657 6768 1630
m21 5 April 6138 1893 5505 2013 6280 1731 6628 1745
m22 12 April 5379 1687 4658 1184 5789 1745 5690 1818
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We selected this limited set of decisions consistent of crops and planting dates
inside our modeling framework in order to not over complicate the problem to be
solved and to have parsimony and clarity in our results.

2.2.1.2. Generation of synthetic crop yields. Limited duration of daily weather records
provided only a few realizations of the ENSO impacts to crop yields (i.e., only 14 El
Niño realizations), however a thorough assessment of climate risk and forecast value
requires the study of a more complete account of ENSO events. Previous approaches
have relied on the use of stochastic weather generators to produce synthetic weather
(Letson et al., 2005; Meza et al., 2003) and then used these weather data to predict
agronomic and economic outcomes. We used a different approach consisting of a
stochastic yield generator based on simulated crops yields.

Our stochastic yield generator employed re-sampling in three steps. First, crop
yields simulated by crop models were sorted for an ENSO phase and a planting date.
Second, a function (logarithmic, exponential, quadratic, or linear; whichever had a
higher R2) was fit to the data. We used a mathematical function in order to avoid
underestimating potential extreme values in the distribution. Third, 990 stochastic



V.E. Cabrera et al. / Agricultural Systems 93 (2007) 25–42 31
yields were generated by re-sampling a function. We repeated the procedure for each
planting date, of each crop, in each ENSO phase.

Our simulated yields are consistent with previous research and data in Florida.
These are supported by Hansen et al. (1998a) findings, in which historical data in
La Niña years showed greater maize yields with lower deviations compared with
lower yields and greater deviations during El Niño years. Likewise, our peanut yields
are consistent with Mavromatis et al. (2002) who found greater yields during La
Niña years and Fraisse et al. (2005) who predicted between 10 and 20% higher prob-
abilities to collect yield indemnity payment during El Niño years than during La
Niña years due to lower yields. In addition, results from Fraisse et al. (2005) pointed
out greater peanut yields for medium to late plantings as in our simulated yields. For
the case of cotton yields, Hansen et al. (1998a) did not found significant differences
among ENSO phases, but historical data indicate a trend of greater yields during El
Niño years as it has been found in our simulation.

Table 2 shows mean and standard deviation of synthetically generated crop yields
across ENSO phases and planting dates.

2.2.2. Economic component

2.2.2.1. Generation of synthetic prices. In order to match our yields, we stochasti-
cally generated distributions of 2970 price series for each crop (peanut, cotton,
and maize) by simulating a multivariate distribution respecting price covariance
among crops based on historical price variability. The procedure followed several
steps (for more details see Letson et al. (2005), Appendix B). First, we obtained
monthly average prices (January 1996–January 2005) received by Florida farmers
for peanut, cotton, and maize from the USDA National Agricultural Statistical
Service (http://www.nass.usda.gov/fl/econ/prices/). We estimated their descriptive
statistics, and explored their correlation structure. We deflated prices to Jan
2005 dollars using the US Consumer Price Index. We de-trended the data for sea-
sonal differences by estimating monthly residuals with respect to their means. We
used principal component analysis to decompose the matrix of price residuals into
three uncorrelated time series of amplitudes that were separately sampled. The
sampled values were combined and back transformed to reconstruct crop price
residuals. We confirmed that the correlation structure of the synthetic price resid-
uals was similar to that of the historical data according to Kolgomorov–Smirnov
tests and that the historical price distributions were well reproduced according to
quantile–quantile plots. And finally, we re-introduced seasonal price averages for
the harvesting dates of the three crops: 2 September–6 November for peanut, 22
September–28 December for Cotton, and 1 July–30 September for Maize. For the
case of cotton, we increased its price by 18.66% to account for the seed value. We
stress the price distributions are not historical values, but distributions consistent
with historical variability.

2.2.2.2. Production costs. We consider variable and fixed production costs by crop in
the model. Contemporary local costs of production and labor requirements for the
three crops were provided by the North Florida Research and Education Center

http://www.nass.usda.gov/fl/econ/prices/


32 V.E. Cabrera et al. / Agricultural Systems 93 (2007) 25–42
(J. Smith & T. Hewitt, Enterprises Budgets, Quincy; personal communication, 23
November 2004).

The variable costs ($ ha�1) were 1088 for peanut, 1122 for cotton, and 574 for
maize. The fixed costs ($ ha�1) were 344 for peanut, 177 for cotton, and 87 for maize.

2.2.2.3. Whole farm model. We used a stochastic non-linear whole farm model to
study the role of climate forecasts in decision making and to estimate the value of
these forecasts. We solved the model to identify optimal decisions and to simulate
annual economic outcomes by constraining the model to the optimal settings with
and without ENSO information, and with and without farm programs.

2.2.2.3.1. Optimal farm decisions. We sampled 325 years of our synthetic yields
and prices to find optimal land allocation to the three crops and planting date deci-
sions, assuming the chance of forecasting a given phase is its historical frequency (14,
35, and 16 for El Niño, neutral, and La Niña phases) for the period 1939–2003. The
model selected optimal decisions for 70 El Niño events, 175 neutral years, 80 La
Niña events, and the sum of all of them.

The model maximized the expected utility (U) for one year planning period sub-
ject to land and labor availability (Letson et al., 2005), where utility was a power
function of wealth based on a constant relative risk aversion Rr (Hardaker et al.,
2004), Eqs. (1)–(3), (5):

max
x

EfUðW f Þg ¼
XN

n¼1

X3

i¼1

qiU W 0 þ
Y
i;n

 !,
N ð1Þ

X22

m¼1

X m ¼ 1; X m P 0 ð2Þ

X10

j¼1

X �mLm;j 6 Lj ð3Þ

Y
¼
X22

m¼1

X mY mP m � Cm ð4Þ

UðW fÞ ¼ W 1�Rr
f =ð1� RrÞ ð5Þ

where i is the ENSO phase (1 = El Niño, 2=neutral, 3 = La Niña), j is the month of
the labor constraint (1–10, February to November), m is the management alternative
of Table 2, and n is the year for each optimization (1 � N);

Q
is income, W0 and Wf

are initial and final wealth, q is the historical likelihood of receiving a given ENSO
phase forecast, X is land allocation, and L is the labor requirement. Y is yield, P is
price, and C is production cost. This model replicates similar models defined by Let-
son et al. (2005) and Messina et al. (1999) for Argentina. We constrained the model
here to use all land each year to account for realistic crop rotations commonly used
in the study area. Local information indicates farmers use different plots of land to
rotate these three crops in different years (C.A. Smith, Extension Agent II, Jackson
Extension Office, Marianna; personal communication, 12 November 2004); the
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model does not distinguish among farm fields, but accounts for size of land and man-
agement practices on each one of them.

We used the MINOS5 algorithm in GAMS (Gill et al., 2000) along with a ran-
domized procedure to alter starting values and assure global maxima solutions.
Every solution identified land allocation for crop enterprises that maximized
expected utility for each constant relative risk of aversion (Rr): 0, 0.5, 1, 2, 3, and
4, Hardaker et al. (2004, p. 102).

2.2.2.3.2. Farm simulation and EVOI calculation. We constrained the farm model
to optimal land allocations to simulate net margins for 2970 years (990 for each
ENSO phase) using all our synthetic yields and all our synthetic prices. This proce-
dure was repeated for each constant relative risk of aversion.

We estimated the expected value of the information (EVOI) by comparing the
simulated net margins with and without forecast according to their historical propor-
tion frequencies. To be consistent with the precedent literature, we estimated EVOI
over different planning horizons in certainty equivalent units (US$).

2.3. Introduction of farm programs

Several farm programs exist in place and directly impact agricultural production
risk in the United States. Among them, crop insurance, disaster assistance, fixed and
countercyclical payments, and commodity loan programs are available for farmers
in Jackson County, Florida. In order to evaluate land allocation decisions for our
three crops, we were interested in farm programs that depend on actual production
and distinguish among commodities as is the case of commodity loan programs and
crop insurance.

We were not interested in disaster assistance programs, federal income taxes, and
other type of farm program provisions (fixed and countercyclical payments) because
they either do not depend directly on actual production or farmers have limited or no
control over them in their annual decision making. In addition, according to local
information (K. Nicodemus, Rural Community Insurance, October 2004) only very
few cases can be found for claiming disaster assistance; Federal income taxes have
been found to influence only moderately the value of the forecast (Mjelde et al.,
1996); and program payments are totally independent of production and farm deci-
sion making.

2.3.1. Commodity Loan Programs

The Federal Agriculture Improvement and Reform Act of 1996 (the 1996 FAIR
Farm Act) initiated loan deficiency payment (LDP) programs for several crops,
including cotton. The purpose of this LDP program is to provide producers with
financial help to market their crops throughout the year. The LDP for a county is
determined by comparing the county’s loan rate and posted county price (PCP). If
the PCP is below the loan rate, then producers are eligible for LDPs. The payment
amount is the difference between the loan rate and the PCP (http://www.card.ias-
tate.edu/ag_risk_tools/ldp/). The farm program of LDP in Jackson County sets a
minimum price of $1.14 kg�1 for cotton.

http://www.card.iastate.edu/ag_risk_tools/ldp/
http://www.card.iastate.edu/ag_risk_tools/ldp/
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The Farm Security and Rural Investment Act of 2002 (the 2002 FSRIA Farm
Act) eliminated the peanut ‘‘quota’’, but created new forms of farm financial help
for peanut growers (http://www.ers.usda.gov/AmberWaves/November04/features/
peanutsector.htm). Among the new sources of government payments is the market-
ing loan benefit (MLB), which entitles peanut growers to receive marketing assis-
tance loans of $0.39 kg�1 on current production. Also the 2002 FSRIA Farm Act
changed the maize MLB to $0.08 kg�1 (http://www.ers.usda.gov/Briefing/Corn/
policy.htm).

In order to compare EVOI with and without the inclusion of farm programs, we
applied the LDP to cotton and MLB to peanut and maize in our synthetically gen-
erated prices by limiting the minimums to at least the levels of the respective pro-
grams. In the case of cotton, we first applied the LDP and then added the value
of the seed. The value of the seed is unaffected by the farm programs. Distribution
of generated synthetic prices before and after the inclusion of programs can be seen
in Fig. 3.

2.3.2. Crop Insurance Programs

Several crop insurance options are available. To reduce the number of decisions
we used the most common insurance products used by Jackson County farmers in
2004 according to the Economic Research Service (www.ers.usda.gov). For peanut
we used multi-peril crop insurance (MPCI) at the 70% level; for cotton crop rev-
enue coverage (CRC) at 65% level; and for maize, MPCI at 50% coverage. The
Fig. 3. Synthetic price distributions with and without farm programs. N = 2970. Maximum, 75th
percentile, 25th percentile, and minimum for each box plot. MLB is marketing loan benefit. LDP is loan
deficiency payment. *Price of cotton is $100 kg�1 units and includes the value of the seeds.

http://www.ers.usda.gov/AmberWaves/November04/features/peanutsector.htm
http://www.ers.usda.gov/AmberWaves/November04/features/peanutsector.htm
http://www.ers.usda.gov/Briefing/Corn/policy.htm
http://www.ers.usda.gov/Briefing/Corn/policy.htm
http://www.ers.usda.gov
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MPCI covers yield loss to a selected level, while CRC covers loss value to a
selected level (yield multiplied by a price election). The price election selected
was the maximum in each one of the cases. It was ($kg�1) 0.3935, 1.4991, and
0.0964 for peanut, cotton, and maize, respectively. The use of medium levels of
yield coverage (peanut and cotton) and highest price coverage is consistent with
what producers tend to insure (Mjelde et al., 1996). Insurance premium costs by
crop were calculated by multiplying the premium cost by the selected planted area
by crop inside the decision function of the model. The local premium costs to the
farmer were ($ ha�1) 29.16, 50.16, and 7.66 for peanut, cotton, and maize,
respectively.

An indemnity payment was calculated when the yield (MPCI for peanut and
maize) or the value of the yield (CRC for cotton) was lower than the insured thresh-
old in a determined year. The indemnity payment was the amount the farmer would
receive in compensation to raise the income of the crop to the insured level. The
indemnity payment was added to the income in the objective function by multiplying
the land area by the price base and by the amount of loss.
3. Results and discussion

3.1. Optimal land allocation and planting date without farm programs

Optimal crop and management choices by ENSO phase are influenced by risk
aversion. The proportion of crops on the farm did not change by ENSO phase
for the case of Rr = 1 (Table 3). However, there were favorable planting dates
for different ENSO phases. Later peanut plantings were preferred in El Niño years,
while very early cotton plantings were chosen for La Niña phases. Medium to late
maize plantings were selected for El Niño and La Niña years, but earlier plantings
were selected during neutral years. Diversification decreased with risk aversion; e.g.,
only 2 crop planting dates were selected for Rr = 4 and only 3 crop planting dates
were selected for Rr = 0, compared to 4 for Rr = 1 when optimized for all years.
Crop rotations and land allocation from optimizations are consistent with the
ranges indicated by local informants. For Rr = 0, 0.5, and 1 the proportion of pea-
nut, cotton, and maize was always 35%, 36.7%, and 28.3%; for Rr = 2, 3, and 4 the
proportion of the same crops was 0%, 37.8%, and 62.2%, respectively, with no pea-
nut being produced.

3.2. Optimal land allocation and planting date with farm programs

3.2.1. Optimal land allocation and planting date with Commodity Loan Programs

Application of CLP impacted only marginally in the optimal decisions. For
Rr = 1, small proportions of planting date crop selection were changed for maize
during El Niño years and for cotton during neutral years (Table 3). For Rr = 2, 3,
and 4 the proportion of peanut, cotton, and maize were 0%, 93.6%, and 6.4%,
respectively.



Table 3
Optimal land allocation (%) when Rr = 1

(A) Without applying farm
programs

(B) Applying commodity
loan programs (CLP)

(C) Applying Crop Insurance
Programs (CIP)

(D) Applying CLP and CIP

All
Years
(%)

Niño
(%)

Neutral
(%)

Nina
(%)

All
Years
(%)

Niño
(%)

Neutral
(%)

Nina
(%)

All
Years
(%)

Niño
(%)

Neutral
(%)

Nina
(%)

All
Years
(%)

Niño
(%)

Neutral
(%)

Nina
(%)

Peanut 16 April 12 35 13
23 April
1 May
8 May 3 14 3 13 11 23 10 22
15 May
22 May 35 35 35
29 May 32 21 32 22 25 25
5 June 35 35 35 35
12 June

Cotton 16 April 37 37 11 37 37 37 37 37 37 37 23
23 April 25 37 14
1 May 37 37 37 37
8 May

Maize 15 February
22 February
1 March
8 March 28 28
15 March 28
22 March 28 20 28 14 28 28 28 28 28
29 March 8 14
5 April 28 28 28 28
12 April
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3.2.2. Optimal land allocation and planting date with Crop Insurance

Application of CIP impacted only moderately the optimal decisions. For Rr = 1,
small proportions of planting date crop selections were changed for maize during El
Niño years, and for peanut and cotton for neutral years (Table 3). For Rr = 2, 3, and
4 the proportion of peanut, cotton, and maize selection were 0%, 37.8%, and 62.2%,
respectively, with variants in the planting dates.

3.2.3. Optimal land allocation and planting date with Commodity Loan and Crop

Insurance Programs

The combined impact of CLP and CIP in the optimization of land allocation was
also only moderate. For Rr = 1, only changes occurred in the planting dates and pro-
portions for maize during El Niño years and for cotton and peanut for neutral years
(Table 3). When both programs are present, the proportion of crop selection for
Rr = 2, 3, and 4 were as in the case of no farm programs.

3.3. Forecast value without farm programs

3.3.1. Forecast value and risk preferences

We used a single 2970-year interval weighted average of ENSO-phase historical
frequency to estimate certainty equivalent (US$ ha�1) to explore the expected value
of the information (EVOI) and compare it with previous studies. Fig. 4 shows the
relationship between ENSO phases, EVOI, and Rr. Risk tolerant farmers employ
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Fig. 4. Forecast value by ENSO phase and Rr level. Each EVOI estimated over a single 2970-year interval.
EVOI expressed in certainty equivalent units (US$ ha�1). (A) Without applying farm programs. (B)
Applying Commodity Loan Programs (CLP). (C) Applying Crop Insurance Programs (CIP). (D)
Applying CLP and CIP. Numbers along with the curve indicate value of the information ($ ha�1) for all
years.
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a defensive response, while risk averse use forecast offensively. Forecast responses in
Jackson County combine defensive with offensive risk strategies. Under normal risk
aversion (Rr = 1), when producers are prepared to minimize income losses (defen-
sively) and to take advantage of favorable conditions (offensively), the average EVOI
was $2.90 ha�1 for all years, which increased to $6.60 ha�1 for El Niño events. The
value of the information increased considerably to around $25 ha�1 for the average
of all years when Rr > 1. This was even more valuable for the case of more risk averse
farmers when El Niño or La Niña events were forecast ($48 ha�1). For less risk
averse producers (Rr < 1), limited increase in the value of the information was
observed for La Niña events and remained steady for El Niño Events (Fig. 4A).

Small-scale Jackson County farmers, like the representative farmer for this study,
are risk averse farmers that would use the forecast offensively by being more respon-
sive to La Niña or El Niño events to take advantage of likely favorable conditions.
Conversely, large farmers would use the forecast defensively by being more respon-
sive to La Niña phases to avoid losses during these events. For all years, EVOI is
$2.40 ha�1 at Rr = 0 and it is maximized at $24.60 ha�1 at Rr = 2 (similar results
were found by Letson et al. (2005), in Pergamino, Argentina).

Our findings of EVOI values, which show the best opportunity of forecasts for
highly risk averse producers and encourages offensive forecast use, is consistent with
previous studies (Letson et al., 2005; Messina et al., 1999; Mjelde et al., 1998); and
Katz’s webpage (www.esig.ucar.edu/HP_rick/agriculture.html).

Even a perfect forecast provides a distribution of possible weather outcomes,
which will impact crop yields and together with uncertain prices will impact eco-
nomic returns. A frequency distribution of EVOI estimates is presented in Fig. 5.

EVOI range and likelihood are of practical importance because forecast users
may want to know the range and likelihood of EVOI as well as the likelihood of neg-
ative EVOI estimates. The probability of negative EVOI estimates in Fig. 5 is 831 out
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of 2970 (28%), which is not negligible. Negative EVOI occurs because of the joint
effect of weather and prices.

Prices of peanut are still highly distorted by government regulations (even after
the 2002 Farm Act that abolished the ‘‘peanut quota’’, there are still quota buyout,
base acreage, and other peanut price programs). It is expected that these peanut price
incentives will disappear in the near future. Consequently, it is highly likely that the
final prices received by peanut farmers will continue decreasing in the near future.
The ERS (http://www.ers.usda.gov) estimates this reduction on the order of 33%
of current likely prices. Also, statistics and projections from ERS indicate that pea-
nut US exports will remain marginal and not have major impacts on the domestic
peanut prices. In order to study the impacts of peanut price reductions in our value
of information portfolio, we arbitrarily reduced the prices of peanuts 33% and esti-
mated the value of the information under those conditions. Results indicated that
there were no substantial changes in the EVOI estimates. For example, compared
with the original case, the average EVOI when the price of peanut was 33% lower
only decreased $0.20 ha�1 under risk normality (Rr = 1), and it only decreased
around $2.40 ha�1 for the average of all years when Rr > 1. The curves when using
33% lower peanut prices were very similar to Fig. 4A.

3.4. Forecast value with farm programs

3.4.1. Forecast value with Commodity Loan Programs

We followed similar analyses to the EVOI estimates when CLP were applied.
Fig. 4B shows the relationship between ENSO phases, EVOI and Rr when CLP
are included. Overall the value of the information is greatly reduced when CLP
are applied. Under normal risk aversion (Rr = 1), average EVOI was slightly higher
than when not using CLP, $3.80 ha�1, which increased to $6.80 ha�1 for El Niño
events. This was the highest value of the information. For higher risk averse levels
(>1), the value of the information was substantially lower than when not using
CLP, on the order of $1.50 ha�1 for the average of all years. The EVOI was small
but positive for all years; however it was zero for La Niña years and Rr = 1 and
for El Niño and neutral years and >1 because there were no differences between
the optimal settings when using forecast information.

While for less risk averse farmers (Rr < 1) a defensive response could have slightly
better EVOIs than not using CLP, for more risk averse producers (Rr > 1) the value
of the information is substantially lower for the case of using CLP. When using CLP,
less risk averse farmers (usually large farmers) would slightly benefit with defensive
responses during El Niño events, however more risk averse farmers (usually small
farmers) would not benefit by using ENSO forecast.

3.4.2. Forecast value with Crop Insurance Programs

We followed similar analyses to the EVOI estimates when CIP were applied.
Fig. 4C shows the relationship between ENSO phases, EVOI and Rr when CIP
are included. When CIP is applied, the overall value of the information is greatly
reduced to even negative values. However, the EVOI for all years under less or nor-

http://www.ers.usda.gov
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mal risk aversion levels was slightly increased to more than $�5.60 ha�1. EVOI was
negative ($�0.50 ha�1) for all years and Rr > 2 because it was highly negative
(<$�11 ha�1) when neutral years. EVOI estimates for El Niño years and Rr were
moderately high (>$22 ha�1). Still under CIP conditions high risk averse farmers
could benefit by potential favorable conditions when El Niño years are forecast.

Negative EVOI is possible as reported in previous studies (Letson et al., 2005;
Mjelde et al., 1996). Negative EVOI occurs because of intra-phase variability: e.g.,
optimization selected a crop combination based on a sample of weather realizations
and the actual weather occurrence differed in ways that impacted income. Moreover,
the incidence of negative EVOI estimates increased when stochastic prices (ENSO
independent) are unfavorable for a defined enterprise proposition. Under high risk
aversion levels, enterprises with less variable returns are chosen over enterprises with
overall higher returns. It was consistent over all optimizations that peanut was not
selected for high risk aversion levels even though it was the most profitable enter-
prise. Also, we sampled 325 years for our optimization and then constrained the
model to the optimal settings. Use of forecast could be a losing proposition when
extreme prices and weather coincide. High frequency and overall higher negative val-
ues found in this study (including the case of not using farm programs) differ from
previous studies. In our model, Jackson County producers are required to use all
their land with limited labor available. This fact makes producers select even nega-
tive enterprises, in order to use labor as efficiently as possible. For example, cotton
was a negative enterprise for all ENSO phases and no farm programs, but it was
always selected because it was needed in the natural rotation of crops as described
by local informants.

3.4.3. Forecast value with Commodity Loan and Crop Insurance Programs

We included both CLP and CIP at the same time and followed similar analyses to
the EVOI estimates. Fig. 4D shows the relationship between ENSO phases, EVOI
and Rr when CLP and CIP are included. Although the inclusion of both farm pro-
grams decreases the overall value of the information, it also buffers the occurrence of
negative values as when is only CIP applied. The EVOI for all years is negative for
Rr > 1 varying between $�0.10 ha�1 and $�0.90 ha�1. The value of the information
was positive, but marginal for La Niña years and for Rr > 1. It was always positive
for El Niño years and it had moderate values ($26 ha�1) for Rr > 1, indicating that
highly risk averse farmers would still benefit by using El Niño forecast offensively by
taking advantage of potential advantageous situations when CLP and CIP are in
place.
4. Conclusions

As hypothesized, farm programs substantially impact the value of forecasts. Farm
programs such as Commodity Loan Programs and Crop Insurance Programs reduce
farm income variability and the riskiness of the farm enterprises. Consequently, the
inclusion of CLP and CIP tends to reduce the overall value of the climate informa-
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tion and increase the likelihood of negative values of the information. However,
depending upon the risk aversion level of the farmer it could vary considerably.
Decision making institutions and regulations such as farm programs will always
affect farm riskiness and farmers’ decisions. They should be included in the analyses
of decisions.

Forecast value is inherently probabilistic even for perfect ENSO phase forecasts
and must be estimated and communicated as confidence intervals rather than a single
point estimate. Our numerous synthetic prices and yields allowed us to generate
probability distributions of the value of the forecasts. Each estimate we report is
associated with its probability of occurrence. Within these distributions, negative
value of the forecast information exists and is not negligible (Letson et al., 2005).

Further research should include weather synthetic generators, other forms of farm
programs, and similar representative farms in the neighboring states of Alabama and
Georgia. Currently, a state of the art weather generator adaptable to North Florida
conditions is being developed by a team of researchers at the University of Miami.
Other farm programs such as direct payments, counter cyclical payments and taxes,
would be useful to better represent the decision making environment that farmers
face and identify more synergies and conflicts between climate information and farm
programs that could be proactively used.
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