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ABSTRACT

Dairy farm is a complex business enterprise with several uncertain and interacting factors
(e.g., biology, environment, market conditions). To become and remain viable in such
environment, dairy farm decision makers needhike betteinformed decisions. Appreciation
of these facts has resulted in extensivefasm data gathering. However, to obtain useful
information for decisiormaking, data need to be processed. For this purpose, mathematical
modeling techniques can beedsto develop decision support systems. This thesis applies
different mathematical modeling methed$/namic programming, Markov chain, and Monte
Carlo to evaluate and quantify the economic impact of optimal replacement decisions,
reproductive managemer@,nd nutri ti onal groupi Bapeafthesel ai r y
models were also transformed into decision support systems that can further assist-decision
making at the farm level. Dynamic programming optimization and Markov chain simulation
were ompared to find the optimal replacement decisions in dairy cows. The results showed that
although dynamic programming remsithe best algorithm for replacement decisions, the
simulation method had comparable results. The effect of reproductive managemnbkatherd
value was quantified by integrating daily dynamic programming and Markov chain models. The
results showed that there is an economic opportunity to differentiate reproductive management
strategies according to dsowsrébustr Markavtchanevasmi | k
introduced and used for stochastic evaluation of reproductive performance. The study confirmed
greater profitability with increased reproductive performance, but a great variation among farms
at a given level of reproductiveerformance was also observed. Finally, a dynamic, finite,
stochastic Monte Carlo simulation was developed and used to evaluate the economic impact of
nutritional grouping of lactating cows. The results indicated that there was an economic
opportunity whengrouping homogeneouscows based on both their protein and energy
concentration requirements. Regardless of herd size, a maximum relative gain could be achieved

by having three nutritional groups beyond the fresh cow group.
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Chapter 1

Introduction



1.1.Background

A Dairy farm is a complex business enterprise (system) with many interacting factors (e.g.,
genetics, environment, market conditions, amdnagementstrategiey that determine the
profitability of the business and the amount of the system output. Dainyerfaror their
consultants (decision makers) need to make informed and robust decisions continuotislty (day
day) to maintain a sustainable business, given the volatile and uncertain market and environment
conditions. Thus, the ability of decision makersrtake the right decisions at the right times is
an important factor that influences the performance of a dairy herd. Traditionally, decisions are
made using intuitive methods, consulting expert knowledge, and using summary statistics from
historical record. This approach could lead to static decisions, which could be insensitive to the

unstable and frequent changes in market and environment.

Nowadays, dairy farmers have access to large amounts of data that could be used te guide on
farm decisions. Howeve this historical data could not be used efficiently without further
transformations and projections. The raw data need to be processed to obtain useful information
and knowledge, which could be used for importanfasms decisions. This step of procespi
raw data to generate valuable information and knowledge using mathematical models and
anal ysi s met hodol Rugnessistelligesced o fTtheurs ctahlel epdurfp o s e
intelligence is to provide decision makers with the tools and models required to make effective
decisions in a timely manner. Mathematical models are usually abstracted into a computer
program that requires data from differsources, and in return generates valuable information in
a useffriendly manner to assist decision makers. These interactive computer programs are called

decision support systems and should be an integral part of any successful business.



Hence, mdtematical models are the cornerstone of the business intelligence and consequently
decision support systems. These are indispensable pieces of amyfoveled decision making
process. Based on the objective and characteristics, mathematical modelbealddsified
into: 1) prescriptive (mathematical programming techniques like linear programming and
dynamic programming that find the best allocation of variables that maximize or minimize a
predefined objective function), 2) predictive (supervised machearning algorithms that
predict a dependent variable like regression analysis), and 3) descriptive (simulation that help to
understand the underlying complex system). These models are usually complex and need to be
integrated into decision support syste which could be successfully used infarm decision
making. Thus, decision support systems bridge the gap between mathematical models and dairy

farm decision makers to make economically sound decisions.

This thesis aims to evaluates and quantify tffece of some of the most economically
influential onfarm decisions (replacement, reproductive management, and nutritional grouping)
using mathematical modeling. Consequently, the literature review discusses a subset of
mathematical models and their agplions in managing replacement, reproductive performance,
and nutritional grouping. In this thesis a daily dynamic programming was developed to find the
optimal replacement policy and consequently was used to evaluate cow values. Robust Markov
chain was ntroduced to evaluate the effect of uncertain input variables on the output of the
model. The last developed model was a terminating, dynamic stochastic Monte Carlo simulation
for evaluating the economic impact of nutritional grouping of lactating cowsedfer, the
reproductive management model was transformed into afniesedly decision support system

for onfarm decisioAmaking.



1.2.Thesis Outline

Chapter 2orovides a comprehensive review of the literature on the system analysis, modeling,
design, and the process of developing an abstract model of a system. The focus of the chapter is
on 3 modeling techniques used in the rest of the thesis. Thelingpdechniques are Markov
chain simulation, dynamic programming optimization, and Monte Carlo simulation. Thus, each
section of chapter 2 starts with a detailed general explanation of the model and continues with
model 6s appl i catinthendairy industrg Thie Ehapteecortcludesi by disdussing

decision support systems, their importance, and examples in the dairy industry.

Chapter 3describes a daily dynamic programming model used for finding the value of the
cows given optimal replacement decisions. These calculated values were weighted by the herd
structure (or proportion of the cows in the state spcsteady stajeobtained fron a daily
Mar kov chain simulation, wieridcalué pr ddecbdr dwhatl

further used to evaluate the economic value of different reproductive performance.

Chapter 4 systematically compares the optimal replacement policy obtained from an
optimization and a simulation algorithnThus, in this chapter, we formally compare the
replacement decisions made by a dynamic progragnrand a Markov chain simulation. The
goal was to explore the possibility of using the new straightforward replacement formulation

using a Markov chain simulation as opposed to a complex dynamic programming model.

Chapter 5introduces the robust Markov chain model, which was developed to introduce
stochasticity into a standard Markov chain model. The developed model was furthermore used to

evaluate theconomic and dynamics of different reproductive performances under uncertainty.



Chapter 6includes a comprehensive explanation of a dynamic stbchi®nte Carlo
simulation model that was developed to evaluate the economic value of nutritional grouping.
This chapter is divided into two sections: 1) design and validation process of the Monte Carlo
simulation model, and 2) Applying the validated model5 commercial herds to evaluate the

economic benefit of nutritional grouping of lactating cows.

Chapter 7gives a brief explanation of the deveéal decision support systems that could

assist dairy farmers and their consultants in making better informed decisions.

As seen, this thesis focuses on general mathematical models that could be used in different
areas of dairy farm management. The studiad developed models were applied on a few
economically important dairy farm decision management strategies. The thesis is not intended to
provide a full survey of all the mathematical modeling techniques available for dairy farm

decisionmaking.



Chapter 2

Literature Review



2.1.System Modeling

2.1.1.SystemTheory and Definition

The application and popularity of system analysis has been on the rise since the published

book of Bertalanffy (one of the founders of

N

1968 (Wikipedia, 2014) In summary, general system theory establishes an integrating
framework, possibly involving several disciplines, that par systems could be studi@dent
and Anderson, 1971Yhus, systenanalysis is a holistic view of a complete system (with their

interrelations) with the goal of better understanding.

A definition of a system seems appropriate before delving itistonodeling. Different
definitions of the term system can be fdun the literature. For example, generally system is
defined as a group of objects or entities that act and interact with each other towards the
accomplishment of some purpof@anks et al., 2009; Velten, 2009)herefore, based on the
definition, to name a fewthere are biological, indusali, and agricultural systems. Agricultural
systems can be divided into 4 types of systems: production, enterprise, regional and national, and
international and globdlCsaki, 1985) Here the focus will be on dairy cattle herds as a specific

type of production systems.

2.1.2.SystemComponents

Systems exist in a hierarchical structure, which explains the need of interdisciplinary research.
An example of the dairy herd systemerarchy is described ifable2.1. In a dairy herd system
cows are entities that i nteract (pens)ttdwardsac h ot
farmerdés goal , which could be overall herd pr

be a dairy farm with all the cows, machinery, and different crops. Many other subsystems can be



at lower levels, which themselves can haveeraetailed subsystems below them. Higher levels
embody the next level of details in the subsystem. Each level of the hierarchy has its own
input/output transformation and characteristics and can be used to describe the system. Thus, the
point of entry in he hierarchy of any system study depends on the objective of the study and the
number of included levels depends on the judgment and requirements of a&undyand

Blackie, 1979)

Table 2.1. Example of hierarchical structure in a dairy farm system (adapted $amensen
(1998)

Levels Systems
N+1 The dairy farm (dairy cows, machinery, crops)
N The dairy herd (new born, heifers, lactating cows)
N-1 The cow
N-2 An organ
N-3 A tissue
é é
Il n addition to system hierarchy, systems ar

environment. o Characteristics of the system e
System researchers usually establish boundaries around the sysieomneent to facilitate
understanding of the system function by restricting the intractable entities and variables; in
reality no such boundary exists in any systdient and Blackie, 1979; Banks et al., 2009)

Applying this boundary in the studied system is important to modeling the system, since it
determines exactly which subsgsts must be explicitly represented in the final model structure

of the systen{Dent and Blackie, 1979)

2.1.3.Why Modeling?

In order to explore the effect of a given change on the system, sometimes it is possible to

construct a field trial to investi gavteethit he ef



is not always possible, especially when setting up the trial is too expensive, time consuming, and
highly variable and difficult to control. In these situations, studies of the systems are
accomplished through system modeling. In these caseslsniog to provide an adequate tool to

break up the complexity and make the problem at hand more tra@taitlen, 2009) Therefore,

researchers usually construct models to understand, analyze, and predict the behavior of complex
systemgGosavi, 2003 hr ough simpl i fication of the syster
not a new idea and is not restricted to the use of computers and generally can be classified into
mental, visual, physical, antiathematical modelfRagsdale, 2012)Here the emphasis is on
mathematical models, which uses mathematical relationships to describe or represent a system or

a complexproblem (Ragsdale, 2012)Mathematical models are abstract models and can be

represented as equations, functions, and computer pro{@Esavi, 2003)

2.1.4.Modeling Terms

To understand and analyze a system using a model, there is a need to describe different terms
used to model a system. The object of inter
AAttri dbutbde observed property of the entity.
variables used to describe a system at a gi Ve
that would change the state of the system. An example of these termsiig hetdd system
follows. A cow could be an entity. Its attributes could be milk yield, body weight, and body
condition score. Its state variables could be milk production level (pndkuctionpotential),

lactation number, and pregnancy status. And iteigtion could be considered as an event.
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2.1.5.Mathematical M odelsClassifications

Mathematical models use mathematical relationships and equations to represent a system.
Ragsdale (2012) categorized mathematical models based on the degree of knowledge of the
functional form off(.) between the independent variablasX¥, € ,, a0d the dependent variable
Y and the knowledge about the values of independent variables. Based on this knowledge, the
mathematical models can be categorized into prescriptive, predictd/elescriptive models. If
the f(.) between dependent and independent variables iskm@iWn and the independent
variables are under researcherds control the
the mathematical programming technigsesh as linear programming, dynamic programming
and network models. In the case that the functional form between dependent and independent
variables 1(.)) are unknown or ifdefined and the independent variables are known and under
resear che rmodel isaalledrpredictivé, Buch as regression analysis and time series
analysis. If the(.) between independent and dependent variables are known, but the independent
variables are unknown or uncertain the model is called descriptive. An examplesef the
descriptive models is simulation. In this thesis, dynamic programn@mhgpter 3, Markov
chain Chapter % and Monte Carlo simulation€fapter § are studied and applied to dairy herd

systems.

2.1.6.Mathematical Programming vs. Simulation

Mathematical programming is a general term used to refer to a broad range of optimization
algorithms. Most commonly used technique is linear programming, which is used to find
complex planning and investment in different industries anegtigmentgFrance and Thornley,
1984) A mathematical programming model finds the combination of input variables that yields

the optimum (maximumrominimum) output (finding optimum allocations). Thus, the purpose
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of these model s is to answer wha't to do? g
optimization algorithm, and the purpose of them is to answer series of what if? questions

(Sorensen, 1998)

2.1.7.Simulation

Simulation is a particular type of modeling used to imitate (duplicate) the essence of a system
without attaining the actual reality of the syst@hright, 1971; Robinson, 2004%pecifically,
simulation is applying modeling techniques to a problem at hand with the objectives of
understanding, solving problem, or answering questions regarding the underlying system
(Velten, 2009) Simulation models could be classified by three dichotorfliass and Kelton,

2007; Banks et al., 2009)

1. Static vs. Dynamic (refers to time dependency of the model)
2. Discrete vs. Continuous (refers to time scalthefsystem)

3. Deterministic vs. Stochastic (refers to uncertainty of events in the system)

Static models represent the system at a given point in time without considering timeschange
On the other hand, dynamic models are the ones that follow the charnbessiystem through
time, thus in dynamic models time is included as a driving variable. This means that in dynamic
models, state of the system at t+1 is a function of the state at (Boeehsen, 1998Pynamic
models, furthermore, could be grouped into terminatingransient simulations (finite horizon)
and steadystate simulation (infinite horizor(Rubinstein and Kroese, 2007; Banks et al., 2009)
according to the output analysis. In a terminasimgulation a weklspecified initial conditions of
the system is used as an input and the model runs for some time or a flagging event that stops the

simulation. In this type of simulation the modeler wants to explore the evolution of the system
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over time gven the initial condition of the system. On the other hand, in stsiady simulation,
the longrun properties of the system are of concern. The model starts with arbitrary state of the
system and runs for a long time, that is until the time that theepies of the system is not

affected by the initial conditions of the systéimaw and Kelton, 2007; Banks et al., 2009)

Discrete simulations are the ones in which the state of the system changes in discrete sets of
points in time. Continuous simulations follow the change in the stateesystem continuously
through time. The choice of discrete or continuous model depends on the objective of the study

and the available information about the characteristics of the sySesavi,2003)

Simulation models that produce the same output given a set of inputs are considered
deterministic. Thus, input variables in deterministic models are described by their mean values.
However, input variables in stochastic models are describetidy grobability distributions.
Therefore, changes in the variance of input variables can change the meaa df edutpus,
whereas the results in deterministic models remain the €aonensen, 1998ptochastic models
can, furthermore, be divided into two type¥pitobabilistic models or Markov chain models and
2) Monte Carlo simulation models. In Markov chain models the transition matrix governs the
probability distribution of movement from one state to another in the next step. In Monte Carlo
simulation modelsdiscrete events are controlled by psewaloddom number generators from

appropriate probability distributions related to the events.

As it was discussed, an important property of the models is the hierarchical structure of the
underlying systemsT@ble2.1) . Based on t hethese ywsutddensddstinttione r ar c
between empirical and mechanistic mod@sance and Thornley, 1984; Sorensen, 1998)

empirical models the output of the model relates to the input within the same hierarchy level. On
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the other hand, a mechanistic model links adjacent levels in a way thakepensaestimated at
one level can predict the resultsadfigher level(Sorensen, 1998Herd level simulation models
are typically mechanistic because the herdos
milk classes of individual animals (subsysten(Sprensen, 1998) These characteristics of

simulation models are summarizedrigure2.1.

Simulation is a twephase process of building the model axperimentation on it. In this
process the real system is replaced by a similar, but abstract, version of the system in a computer

to overcome problems related to physical experimentation of the real y8taght, 1971)

Discrete |« » Continous

Type of time
variables

Deterministic

i Empirical

A A

Uncertainty Eou . TN System’s
w053 Simulation :
characteristic hierarchy

h 4 h 4

Stochastic ¥ Mechanistic

Time
dependency
of the model » Terminating

Static < » Dynamic

\ 4

Steady-state

Figure 2.1. Types of simulation (compiled from different sources)
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2.1.8. Advantages andDisadvantages oM odeling

There are some considerations that make modeling advantageous over field trials and
experimentations on the real systems. The most important factors that make modeling
advantageous are related to cost, time, control of the exgrsmand ability of comparing
different system designs. Experimentation on real system often is expensive and requires a great
amount of time to finish. Even in the case that these two factors are not prohibiting the inability
to control some aspects diiet experiment makes simulation and modeling techniqgues more
appealing in some situatioffRobinson, 2004)In addition to a way to estimate the performance
of an existng system, modeling can be used to compare alternative proposed system design in a

compressed amount of tinfleaw and Kelton, 2007)

Disadvantages of modeling are the time required to develop the model, data requirements,
expertise needed in developireg model, and possibility of overconfidence in the results
(Robinson, 2004)The time required to build a full representative model of a system could be
dramatic. Todeel op a representative model of a syste
system is requiredRegardless ofhe quality of thelevelopednodel| the input data governs the
accuracy and relevancy of the results of the simulation model (this use&dyed to as
Afgar bage i n, g ar [{Ghyng, 2004) tOvercanflienceocimiben esults of a
modeling is one of those subtle disadvantageous of simulation.e$uksrfrom a modeling are
as much valid as the method and data used as an input of the model. It is easy to forget about this

fact and oveinterpret the results of the simulation with a high confidence.
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2.1.9. Simulation Study Steps

To construct a successful simulation model from scratch, researchers have suggested different
steps(Csaki, 1985; Dijkhuizen and Morris, 1997; Law and Kelton, 2007; Banks et al.,.2009)
The specific number of steps and the feedback process of these steps/arguéinong
textbooks; lbwever, the main structure of the steps dadterative nature is the samEeigure
2.2). The first step in this process is the problEmmulation and setting up objectives for the
simulation model. The simulation process starts up with a problem at hand and sets of objectives
that need to be achieved by the simulation model. The designed model greatly depends on the
data available on ghsystem, and therefore the second step of simulation study is gathering data
and creating useful information that could be used in the model. This step is also concerned with
creating a conceptual model (model conceptualization) of the system andnadljtngooints that
need to go into the model in an abstract way. Constructing the conceptual model is as much art
as science, especially with respect to the ability of the modeler to abstract the easential
important features of the systemelated to the problem at hand, and making essential
assumptions in regards to the problem declared in the objective of the (Baulet et al., 2009)

This is done to have a good enough model to answer the questions without dealing with

unnecessary details that mightittér the results of the study.
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Document and present
the results

Figure 2.2. Steps for conducting a successful simulation study (adapted_&on(2003)

The best method in creating the conceptual misdeith starting up with a simple model and
adding in complexities in a stepwise man(ianks et al., 2009)This would help the process of
developing the simulation computer program in the next step. However, before building the

computer model a validath is appropriate. This would be a simple sanity check of the
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conceptual model and its components before going into the computer programming and
development phase of the model. After validating the conceptual model of the system, the
programming phase ofi¢ model starts. Here, the modeler needs to decide what software should
be used in building the simulation model. The choice is either using a general programming
language (e.g., C++, Java, and Visual Basic. NET), commercial simulation software (e.g.,
Arena®, SIMUL8®), or spreadsheet modeling using @Risk. Commercial simulation software has
the advantage of reducing the required time of programming. On the other hand, general
programming languages gives the modeler flexibility in modeling witregpenseof time and
programming expertisd.aw, 2003) Given the choice of a general programming language for
the development of the modethoosing an appropriatstyle of programming is important.
Different styles of programming include structural (procedural), olgeented, and functional
programming. The choice of style of programming depends on the simulation method and the
time available for the model development. Obmeénted programming approach, due to
inherent link to real life objects with the objects ie tomputer program, has had large attention

in the livestock literatur¢Jagrgensen and Kristensen, 1995; Sequeira et al., 1997; Shaffer et al.,
2000) In this thesis, a separate chapter has been devoted to the modeling of a stochastic Monte
Carlo simulation usinglgectoriented programming approach to evaluate the economic value of

adapting nutritional groupings in lactating dairy co@&dpter §.

The progranming phase is an iterative process of adding new modules and code snippets, and
testing constantly the new units and the overall performance of the modules together. In
simulation studies this testing and debugging phase of the computer model is adileatioa
of the model, which checks for correctness of the computer program for performing the

simulation and correctly translating the conceptual model into a program (debugging the
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program) (Law and Kelton, 2007; Banks et al., 200®fter this the developed computer
program still neds to go under a validation check. Validation, checks the degree of agreement
between the model and the target sys{&arensen, 1990)n other words, it determines if the
model is an accurate representation of the system with respect to the study ohjeativaad

Kelton, 2007) Usually, validation is considered to be the most difficult and therefore, both
objective and subjectivenethods, are used to test the mo@&brensen, 1990)Objective
validation of the model would include statistical tests to find the degree of agtekeeteren

the model outputs and the system performance (e.g., goodness of fit tests). However, in practice,
it might be unfeasible to perform a field trial in parallel to the model. Thus, as it happens in most
livestock models in the literatu(&orensen, 1990kubjective validation techniques are usually
used. For the purpose of subjective validation the results from model could be compared with the
original systembés dat a, industry averages, e X

variables of the system.

After the model is thoroughly validated the researchers need to design, conduct and analyze
experiments to answer the questions thaeHhaeen defined at the first step of the process. The
most common approach for running different simulation experiments is to use sensitivity
analysis. That is a systematic change of input parameters over a range to explore the effect of a

given change othe outcome of the model.

The final step is to document the model, including the conceptual model and the assumptions
made throughout the building process, and publish the results obtained from the model in

scientific magazines.
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2.2.Markov Chain Simulation Model

Markov chain is a special type of a stochastic process with a key property. Stochastic
processods properties change randomly with tim
of the stochastic proce¢&osavi, 2003)For example, a dairy herd system can be considered as
a stochastic process, in which states (englk production and diseasesf its entities (dairy
cows) are changing randomly through time (days in milk). The kegepty of Markov chain
can be stated d8lillier and Lieberman, 1986; Gosavi, 2003; Hardaker et al., 2004)

P{Xw) =11 Xo= 1} = (1)) (1

Where X is the system state space at stage (time) t, i is the current state of the system, and j
is the next state of the system. This equation states that the probability of being in state | at next
stage given the current state of i is constant and equals fdbability of moving between two
states. In other words, the conditional probability of any future event, given any past event and
the present state«i, is independent of the past event, and only depends on the present state of
the procesgHillier and Lieberman, 1986)This is a must condition for the Markov chain models

and i sMackavian peogertgi anemoryless propey of Mar kov chain mod

Beside states variables, Markov chain simulation model is definéd btage length and the
transition probability matrixK). Stage is the time unit between subsequent events in the Markov
chain. Elements in the matri are the probability of moving from each state in the state space
to a different or the same statethe next stage (t+1) of the process. Generally, Markov chain
represents a system or process that moves between a number of states and the probability of
being in different states in this process is governed by transition probabilities. The frequency of
changes among the states is dictated by the stage length of the model. A transition diagram of a

two states Markov chain process is illustratedrigure 2.3. In this example, two states are for
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pregnant and nepregnant cows in a dairy herd at monthly time intervals. The diagram shows
the possible transitions between states and the corresponding probability attached to it with a
stagelength of a month. Same transitions can be viewed in the form of the transition probability
matrix (P). An important characteristic of the transition probability matrix is that the summation

of the rows across different states should add to one. Aftethallrows are probabilities of

moving from one state to another in the next stage and they must add up to one.
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Figure 2.3. Transition diagram of 2 states Markov chain for pregjreard norpregnant cows
with the corresponding transition probability matrix (P)

In this hypothetical and simplified example of a dairy herd system, gmgmant cow can
either stay in the current state (A@regnant; 0.7) or become pregnant with théphulity of 0.3.
The same two way path could be argued for a pregnant cow. A pregnant cow could stay pregnant
(0.9) or it could undergo pregnancy loss (0.1). This transition probability matrix is also called
onestep transition probability, as it represetite probability of moving from the current state at
stage t to another or the same state at stag@getrtiaker et al., 2004and because the transition
probabilities do not change in time, is called stationary transition n{étillier and Lieberman,
1986) The important question in Markov chain models is to determine the state of the system in
the future, regardless of the current state of the system. This is usually called theststeady

distribution or equilibrium distribution of a Markov chain and the obtained stabilized
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probabilities are referred as steegly at e or | i mi X (Agragval and Heady bl97R;i t i e s
Dijkhuizen and Morris, 1997; Hardaker et al., 2008)e steadystate distribution exists in the

case that the Markov chain is irreduciljé states of a Markov chain communicate with each

other). The term steaestate probabilities means that the probability of finding the process at
state | after a | ar ge ny mhdeis indepéndent rofatimesinitiali o n s
probability distribution defined over the stat@édillier and Lieberman, 1986) This distribution

in small problems can be found in two ways. The first way is by multiplyingstegetransition

matrix (P) by itself multiple times until # elements of the result matrix do not change. The

second method is to solve a series of linear equations obtained from the transition matrix entries.

The first method to calculate the steedate distribution is using a osé&ep transition
probability () for the current stage to find the next stage transition probati#iyTherefore,
P, could be calculated by multiplying; By itself. By multiplying B by itself the transition
matrix of the 4" stage P.) is obtained. By repeating this processtta@sition matrix converges
to a matrix that does not change from one stage to another, and is called theststeady
distribution @) of the system. Thus, thestep transition probability matrix can be computed by
calculating the i power of onesteptransition matrix(Agrawal and Heady, 1972; Dijkhuizen
and Morris, 1997)For example, for a two state process with transition probability as shown in

Figure2.3 the results would look like:

E T T “E T[EB)QT[SQJH,E narrxqta)ucép” T8 L T L
H T T ¢ T T T PpX P YeT TRUTEU

The obtained Pis the probability of having nepregnant (0.25) and pregnant (0.75) cows at a
steadystate situatin of the system, given the oestep transition probability. In this simple

example, the steaeltate distribution was obtained after about 25 sequential multiplications of
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the transition matrices. However, it is obvious that with more states and thebejges

transition matrices this can be computationally expensive or even impossible.

The second method finds the steatigte distribution by solving sets of equations obtained
from the transition probability matrix and the fact that the probabilittessa different states
must add up to 1. IRigure2.3 example, the steaeltate probability of being at a ngmegnant

(1) andp r e g n a ny willdbe¢ faundeas follows:

A XA TEPA
A A  TEN

A A p (Normalization constraint)

Here, we have 3 equations and two unknowns and the sséaeydistribution could be found
using basic algebra. Solving these would give #raesresults as above, but in a faster and more
compact way. In problems with thousands of these equations the equilibrium could be solved in a
direct way using Gaussian elimination meth@ich as Gaus¥ordan methodTijms, 2003)
using available libraries and software packages. However, when the state space becomes very

largethese direct solution could suffer from computer memory prob{@ijras, 2003)

In reatlife dairy Markov chain models the transition matréxviery large (order of hundreds
of thousands or millions) and sparse (a matrix with many O entries and fewermwalue).
Sparsity (also called density is the fraction of zeros in a sparse matrix ) is the characteristics of
dairy cow systems, in whichfaw transitions are possible according to age of the ¢dalgingh
et al., 1992) In these models using the matrix notation and solving sets of equations are
computationally demanding and for big models even impossible, due to memory issues for

storing sub big matrices. In these kind of models, the equilibrium distribution is equal to
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distribution of cows over all possible states in terms of relative numbers of cows, which is
governed by the involuntary culling and forced replacements that keep the zercbsstant
(Jalvingh et al., 1992) This method for finding the steadate distribution was introduced and
used inJalvingh et al(1992)andDelLorenzo et al. (1992and theequationsf this method were
introduced byDe Vries (2004 and were detailed iGiordano et al. (2012)his method isalled

an iterative approach of finding steashate distributiorfDelLorenzo et al., 1992; Tijms, 2003)

2.2.1.Markov Chain Models in theDairy Herd Industry

The probabilistic nature of the Markov chain model made it suitable for many problems
facing the dairy industry. These types of models could usually be used for projection, economic
evaluation, finding distribtion of the farm size, and population structure in a {amy(Judge
and Swanson, 1962Markov chain application in dairy industry ranges from health and disease
controls(Oltenacu and Natzke, 1976; Sorarrain et al., 1980; Collins and Morgan, 1992; Allore
and Erb, 1999; Ivanek et al., 200@nd estimating the herd structaethe steadgtate which
could be used to explore managerial changes in the herd economics, dynamics, and its
environmental impacts. Examples of the Markov chapplicationsin the literature are:
environmental impacts of dairy herd€abrera et al., 2006, 2008; Bell et al., 2011, 2013)
breeding technologies and reproductive performattasingh et al., 1993a; Yates et al., 1996;
Giordano et al., 2012)addin module to optimization tecloues(DelLorenzo et al., 1992; De
Vries, 2004; Kalantari et al., 2010; Kalantari and @ad, 2012) and making swoptimal

replacement decisior{€abrera, 2012b)

2.2.1.1 Health andDisease<Controls

Since the 197Markov chain model has been used to model the mastitis infection process in

dairy cows(Oltenacu and Natzke, 1976; Sorarrairakt 1980; Allore and Erb, 1999Markov
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chain is a fit for mastitis infection due to its sequential structure and natural stochasticity
(Oltenacu and Natzke, 1978n Oltenacu and Natzke (1976judy, each quarter of the udder

was considered as the unit of the process and 7 possible infection states were expbsed. Th
states were as follows: not infected, clinical and subclinical streptococcus infections, clinical and
subclinical staphylococcus infections, and clinical and subclinical infections with other
organisms. Their model was discrete despite the fact thanfibction process is continuous. The
model divided a year in lactation to monthly stages and into lactating and drysmBedause

the model was small (transition matrix of 7x7) the model was solved by the matrix multiplication
method. Sorarrain et al. (1980¢xtended this Markov chain simation by developing both
continuous and discrete Markov chain models of the mastitis infection. Their model used the
same state variables as the described study above. The results from continuous and discrete
results were similar at steadyate and bottmodels were in agreement the outputmilk
production of the modeléSorarrain et al., 980) Markov chain model has been also used to
evaluate the economic impacts of other diseases such as paratuberculosis and microorganism

fecal shedding from dairy cow€ollins and Morgan, 1992; Ivanek et al., 2Q07)

2.2.1.2.The Effect of Managerial Changes on thederd Output

The main use of the Markov chain model is to describe the dairy herd structure at the steady
state. Due to this capability, Markov chain models have been developed to explore the effect of
input parameters on the economic or dynamic of a herd in arlongror example, many studies
have used the Markov chain model to explore the environmental impact of cloardjiéferent
input parametergCabrera et al., 2006, 2008; Bell et al., 2011, 20CHbrera et al. (2008)
developed a monthly Markov chain model with 9 parities, 20 months in milk, and 9 months in

pregnancy. The model was run for 156 months (till the stetatg and the herd structure at the
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steadystate was further used to observe the seasonal manure excretion by dai(Cabttea et

al., 2008) Bell et al. (2011explored the effect of improving productivity, fertility, and longevity

of cows on global warming. For this purpose, using Markov chain model the herd structure was
modekd over time. The stage length of 60 days was used and cows were described by using 4
parites status (1 to 3 and 3+) and 10 witkgalving interval periods of 60 days (40 states). The
authors used the GQequivalent emissions to explore the effect of ¢jesnin productivity,
fertility, and longevity on the potential impact of dairy systems on global warrBiel§ et al.

(2013) used the same model to investigate changes in cow production and fitness traits on net
income and greenhouse gas emissiortairy farms. These are samples of Markov chain used in
estimating the herd structure in a long run to be used in evaluating the impact of a given change
on the variable of interest. More examples of these models in a few publications with a high

impacton future resear@sin dairy industryfollow.

One of the earliest monthly Markov chain models, used to simulate dairy herd dynamics, was
developed byalvingh et al. (1993aYhe nodel was used to study the effect of different calving
patterns with the goal of optimization using linear programming in a subsequen{Jilwitygh
et al., D93b) Included state variables in the model were: 15 milk production classes (70 to
130% of average milk production), 10 lactations, 17 months in lactation, time of conception, and
month of calving to include the seasonality. Transition probabilitiekided milk production
transition, involuntary and voluntary culling, and probability of pregnancy. This study greatly
influenced following studies by describing the model and presenting its power in simulating herd
dynamics to explore the effect of maeagent and economic changes on the dangbehavior

of a dairy herd. The authors, furthermore, suggested that the model should be integrated with the
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management information system of the farm in order to gain extra insights before committing to

managementhangs.

St-Pierre and Jones (200developed a discrete, dynanfarecasting model using Markov
chain model to manage milk production risks corresponding to the unit price and quantity
produced (i.e., price and product risk management). The state variables for describing milking
cows in the model were 3 parities, 10éeks in milk, pregnancy status (0,1), and 40 weeks of
pregnancy. The state variables for aging heifers were 156 weeks of growth, pregnancy status (0,
1), and 40 weeks in pregnancy. From the state variables it is obvious that the defined stage length
in the model was a week. Weekly aging process was followed using transition probabilities in
pregnancy, involuntary and voluntary culling, abortion,-dffy and freshening. The model,
furthermore, used Bayes methods to estimate the transition probabilitié® fetate variables.
The authors concluded that Markov chain could be used to successfully represent dynamic of a
herd through time, and the fact that forecastariance, increases monotonicatiyoughtimein

simulation(St-Pierre and Jones, 2001)

The ability of Markov chain to find the steadiate distribution (herd structure) of the cows
has also been usedr@placement optimization studiéBelLorenzo et al., 1992; De Vries, 2004,
Cabrera et al., 2@) Kalantari et al., 2010)In these studies, it is assumed that the optimal
culling and insemination policies will affect the freshening patterns and flow of the animals in
the herd, which in turns affect the milk production, feed requirements, alatesEnt needs
(DeLorenzo et al.,, 1992)Thus, to account for these changes in cash flow of d, her
optimization studies determining the steadgte structure of the herd seems necessary. For
exampleDe Vries (2004developed a monthly Mkov chain simulation module for calculating

the herd performance and statistics after finding the optimal replacement policy using dynamic
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programming. This model used the same state variabléshasgh et al. (1993axcept having

12 lactations. The transition probabilities were also the same, but with different values. This
model was one of the few models described in detail and was used as a framework by other
researchergCabrera et al., 2006; Kalantari et al., 2010; Giordano et al., 2@l2airy

management research.

Cabrera et al. (2006) used a Markov chain simulation model to simulate a herd structure to
explore the nitrogen leaching of dairyrfas under different seasonal conditions. In this model
they used a monthly stage Markov chain model with 9 lactations (O=heifers-@ridr each
lactations), 9 months in pregnancy, and 20 months in milk (and in the case of heifers 32 months
of age after bith) as the state variables to describe cows in the mbd#his study, asimilar
approachwas used to populate the state space of the cows using probability of pregnancy, and
involuntary culling as the transition probabilities and stepping throughttirobtain the steady

state herd structure or proportion of the cows at each state.

The stage length of the Markov chain model was reduced to one day in a model developed by
Giordano et al. (2012p study the reproductive and economic impact of different reproductive
programs. The model aimed to do a comprehensive comparison among different reproductive
programs (100% timed artificial insemination wsombined heat detection and artificial
insemination using Doubl®vsynch protocol), in terms of herd economics and dynamics. Thus,
daily stage length was advantageous to create a good representation of dairy herds with respect
to reproductive programs. €hauthors used 3 state variables of 9 lactations, up to 750 days in
milk, and 282 days of pregnancy to describe the cows. Involuntary culling, death, reproductive
performance, and pregnancy loss were used as the transition probabilities. Using the model

auhors concluded that as long as the conception rate of a reproductive program is above 30% the
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combined program would outperform 100% timed artificial insemination program. The two main
sources of the generated economic value from reproductive programstaerdentified to be

income over feed costs and replacement costs.

2.2.2.Summary of Managerial Changes

Following these few examples in dairy industry the common state variables for describing a
cow in the models are: a variable representing their age {tact@imber or parity), a variable
capturing the stage of a lactation (either month, week or days in milk), and a variable that
monitors the pregnancy status of a cow ¢poegnant or month, week and days of pregnancy or
days open in earlier models). Othariables also have been used to better describe a cow in the
Markov chain model. For example, milk production clé@sLorenzo et al., 1992; Jalvingh et
al., 1993a; De Vries, 2004; Kalantari et al., 20H0d season of calvi®elLorenzo et al., 1992;

Jalvingh et al., 1993a; De Vries, 2004)

Transition probabilities, due to the uncertainty of performance and survival of the cows, can
be classified into 4 rpups: reproduction, production, disposal (involuntary culling and death),
and replacemer(falvingh et al., 1993aBased on the used state variables in the specific study
one or more of these transition probabilities are used.example, milk production transition
probabilities were used in many studies suclbakorenzo et al. (1992), De Vries (2004), and

Kalantari et al. (2010)

The size of the models discussed above ranges from @ 200ea et al., 20060 more than
600,000 stateg¢Giordano et al., 2012)The overall size of the model directly depends on the
number of state variables used to describe a cow in a herd, whicilyddepends on the stage

length of the model. The total state space can be found by calculating the Cartesian products of
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all the state variables dimensions. For exampl®&envries (2004there would be a total state
space of 518,40(L5x12x24x10x12)However, not all of these combinations are possible due to
biology, and managerial constraints. An example of a constraint is the relationebetwe
pregnancy and month in milk. A cow cannot be 4 months pregnant and 2 months in lactation.
After exclusion of those impossible states the total state number of that modek byries

(2004) was 343,440. The stage length, which indirectly affects the size of the model in these

studies ranges from a mor(fbe Vries, 2004jo a dg (Giordano et al., 2012)

2.2.3.Sub-Optimal ReplacementDecisions

The latestpplicationof the Markov chain simulation has beeriroducedby Cabrera (2012)
in a new formulation of replacement problem and evaluating a cow value in dairy herds. In this
monthly model 33 months after calving, 9 months in pregnancy and 10 lactations were used to
describe cows in the model. The steathte disttbution of cows (herd structure at steasdgte)
was obtained by considering the monthly aging of the cows and transition probabilities on
involuntary culling, pregnancy, and abortion. Thus, the stetate herd structure was found like
a regular Markov chin simulation by advancing through time and considering the transitions
among state¢Cabrera, 2012b)However, the idea in this model was to also estimate the net
present value of a cow and its replacement for each stage of the froelelet present value of a
cow and its replacement were calculated by addinthalkkconomic values at each stage from
the start of the simulation until the model reached ststatg. Economic values at each stage
were calculated as the sum producthe net revenue of each state and the corresponding herd
structure(Cabrera, 2012b) Finally, the cow value was estimated by subtracting the net present
value of a replacement heifer from the net present value of a cow and addwragsiaetion cost

(Replacement codgt cow salvage valué calf value) to the result. The calculated cow value
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further could be used to rank the cows and make culling decisions. Through a systematic
comparison the subptimal replacement decisions found Iystmodel was compared against
optimal replacement decisions found by dynamic programnwhgch isreported inChapter 4

The results showed a higborrelation between the suptimal and optimal replacement
decisions Chapter 4. Thus, this usefriendly model could be used by farmers and consultants to

assisthem for making otffarm culling decisions.

2.2.4. Introduction to Robust Markov Chain

As described, an application of Markov chain models is to estimate the herd structure,
dynamics, and economics after a given change in input paranigérmgh et al., 1993a; St
Pierre and Jones, 2001; De Vries, 2004; Giordand,e2@12) In addition, the model can also
be used to estimate the biological variation among cows in a herd at the-stsgadyrhis
variation is due to transition probabilities (probability of pregnancy, culling, death, and abortion),
which introducs variation among cows in a herd based on their current state and the chance of
moving to another state based on the transition probabilities. However, the Markov chain model
does not include uncertainty in the input parameters due to imperfect knowlédgefore, the
model produces expected value for all the outputs given predefined input parddadtangh et
al., 1992) This refers to the probabilistic nature of the Markov chain model as opposed to the
stochastic nature in Monte Carlo simulations, ahmeans that the probabilities used in the
transitions are historical expected values, thus ignores the uncertainty around the expected values
(Kristensen et al., 2006)lo amend this condition in the Markov chains simulatimodels a
robust Markov chain model could be used. Therefore, a robust Markov chain model was
developed and used to assess the economic value of reproductive performdaicg farms

under uncertain condition€hapter %. This method follows the concept of robust optimization



31

used in the operations research litera (lyengar, 2005) For example, robust dynamic
programming considers sets of possible transition probabilities to account for uncertainty in the
transition probabilities to capture its effect on the optimal msideing made by the model
(lyengar, 20058) The robust Markov chain model presentedCinapter 5was envisioed to

include such uncertainties and randomness that could be expected within and between targeted
dairy farms. In this model, randomness was added to all transition probabilities, milk production
levels, and reproductive costssing either oftwo methods 1) using a polynomial regression
model to build a white noise around the observed historical data for involuntary culling and
abortion; and 2) using distributionsuch as the normal distribution for milk production levels

and triangular distribution fopregnancy rates. Including stochasticity into input parameters
(transition probabilities) of a Markov chain model produces uncertainty around the outcomes,
both herd economics and dynamics. Presenting the outcome of a Markov chain with uncertainties
alongi de the farmero6s risk preference knowledg
informed decisiongOlynk and Wolf, 2008) Consequently, this might be helpful to direct their
managemenpractices to higher profitability given their current reproductive performance. More
specifically, distribution in the outcomes could quantify the probability of reaching a target net
return, thus, giving decisiemakers a useful cue in directing theiamagement practices to

attain higher profitability given their current reproductive performance. These opportunities were

not available within a standard Markov chain model.
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2.3.Dynamic Programming

I n 1957 Richard Bel |l m®dynanpcaRbdgrammihge dwhai dlo owa £ nu
for solving sequential decision problelfi&istensen et al., 20065equential decision problems
are those thathe decisions made in earlier times would affect the future decisions by the
decision maker. Dynamic programmingF), also known as Markov decision proceSDP)
from Howar dos 1960 book, IS a mathemati cal
algorithm to divide a multistage problem into a series of independently single stage problems to
solve it (Puterman, 194). To define these dynamic decision problems, 5 main elements are
needed: actions (or sometimes referred as decisions), stages (or decision epochs), state variables,
transition probabilities, and stage returns (also called immediate rewards or(Pos¢sinan,
1994 Hardaker et al., 2004)The following notations are based &uterma (1994) and
Hardaker et al. (2004JExcept actions and stage returns #ileo concepts have been described in

the Markov chain model section earlier.

2.3.1.Dynamic Programming Terms andConcepts

In the context of DP the total number of time periods that the decision needs to be made is
called planning horizon (T) and is divided intecision moments (t) with the predefined and
equidistant points in time (stage). The length could be yearly, monthly, weekly, daily, or any
other time periods that makes sense for the problem at hand. The planning horizon in DP models
could be either firie or infinite, here for simplicity only the finite planning horizon would be
covered, but the methods are similar. Typically, at each stage an agtioA;(A=predefined
sets of finite actions), is chosen by the decision maker. Furthermore, the ctitsemiaa given
stage is affected by the vector of state variablgis $SS=finite state space), used to describe the

state of the system. The state changes between two consecutive stages ik are governed by
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the transf or njaTrarsformatibnufunctioni i & function of the current state,
transition probabilites ) | s, a) , and tdi(%,P,a)e Tramstionepdobalailityt i o n
(P(j|s,a) denotes the probability that the system is in state j at time t+1, when decision maker
chooses action a. In fact, this transformation function is the main differetice darkov chain

model and the DP model. Markov ch@aisnly controlling and governing state transitions is the
transition probability matrix. However, DP is basically a Marlchain model with additional
control of actions at each stage of the problem, and hence the name Markov decision process

(Gosavi, 2003)

In addition, at each stage t there is a stage returmarediate rewards that measures the
payoff earned at that stage, and is a function of the current state and the decision made at the
stage £f(S,a). The DP, MDP model, is a particular kind of sequential decision model, in which
the available actions, thewards, and the transition probabilities depend only on the current
state and action not on states and actions occupied and chosen in t{rufEstan, 1994)
Thus, the qualifier AMarkovod is used because
and stage returns depend on the past only through the current state of the system and the chosen
actionby the decision makdiPuterman, 1994) Thi s i s the HAMarkovi an i
property) that has beentioduced earlier in the Markov chain models. Thus, these two models
have a lot of similarity in the modeling perspective. However, from the solution perspective, due

to extra decision step the two models have different solution methods.
2.3.2.Dynamic DecisionModel
The sequential decision problem or dynamic decision model is represented symbolically in

Figure2.4. The state of the system atesified point in time (1) is observed by the agent or a

decision maker, and based on this an action is chosen. This choice has two consequences: 1) the
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decision maker receives a stage retunZ) the system according to the transformation function

(Q) evolves to a new state. At stage t the similar problem should be tackled by the decision
maker, but based on the state and the immediate rewards of that state a different action might be
selected(Puterman, 1994)Following this pattern the process evolves through time and the
decision maker receives a sequence of rewards based on the selected actionsioffhe act
selection at each stage depends on the preselected objective function (performance metric),
which could be either maximization or minimization of sequence of rewards or costs. The goal of
the process is to find the policy (sets of actions that maptates; in other words prescription

for taking actions at each stagBjms, 2003) that optimize the optimality criterion. Regarding

the optimality criterion the decision maker has multiple options. The popular criteria are
expected total reward, total expected discounted reward, and expected average reward per unit of
output (Puterman, 1994; Kristensen et al., 800The choice of the criteria depends on the
problem at hand and the planning horizon type (finite or infinite planning horizon). In the
remainder of this thesis the total expected discounted reward, which is relevant and most used for
livestock problens (Nielsen and Kristensen, 2014yill be used. The total expected reward is a

good choice for solving finite planning horizon problems at hand.

a1 & i3
Optimal decisions

St S¢ = Te.1(Se.1.a, =
—_— Stage t-1 = Tri(Senaen) Stage t S =TdSw) | . Stage 0

|

Te1 =res (Se1.ae1)

1 =17 (Sp.ay)

Figure 2.4. Schematic representation of dynamic programming model (basddrdaker et al.,
2004)
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2.3.3. Finding Optimal Solutions

Solving a DP problem entails finding the policy (action map from states to actions) vector,
and the expected discounted rewards for all the states of the problem. Methods available to find
the optimal solutions of a DP problem includelue iteration, paty iteration, modified policy
iteration, linear programming, and hierarchical Markov decision process. Only the value iteration
algorithm would be described in this thesis, due to its popularity in the literature (both in
livestock systemgNielsen and Kristensen, 201dhd engineering(Alagoz et al., 2015) This
algorithm is straightforward to code in a computer program and it is also the best approach to
solve largescale MDP problems. Both of these factors contribute to thmilaoty of this

method in the literatur€lijms, 2003)

The bellman optimality equation, also known as functional or recursive equations, is as

follow:

W i iNAjSFxb _ nNdEmon [2]

N

Where V(s) is the total expected discounted reward, a is the action to be taken from set of A,
r(s, a) is the i mmediate reward of state s wh
considering the timealue of money and implies that decision maker has a time preference so
that an immediate reward today is preferred over an identical reward at a late(Hzeaye
1997) andb BJA is the onestep transition probability of going from one state to the next
under action a. These are recursive equations and the solving process starts at the end of planning
horizon (T) bysetting the V(s) of all the states equal to their salvage value. After that, the

process continues to the present time and each stage uses the total expected discounted rewards
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calculated from the previous stages to find the next value, thus the recquative of these

equations.

2.3.4. Value lteration M ethod

The value iteration method which is often simply referred as DP, successive iteration or
successive approximation could be used to find the optimal value functions from functional
equations (Eq. 2). Theufnct i onal equation reflects the Be
stating that an optimal policy has the property that whatever the initial state and the initial
decision, the remaining decisions must constitute an optimal policy with regard to the stat

resulting from the first transitiofPuterman, 1994)

Value iteration algorithm steps:

1. (Initialization) Iniialize V'(s) to zero or the salvage value and set T to the end of planning
horizon

2. (Value iteration step) For each s in the state space comp(8 by

W i I'NAQiin'b _ nN@heo 1

3. (Stopping test) If t = 0 go to step 4, otherwise@etep 2.
4. For each s in the state space choose the action that has the maximum (minimum) of the

VO(s).

This algorithm could be applied to infinite planning horizon case by changing the third step
(stopping test). In such case the algorithm would run until the convergence check crfferion (

stops the iterations. The decision found by value iteration asdlysiot exact and dependent on
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the choice of , so calle-optimal decisiongPuterman, 1994)The value gration method has
many different versions used to increase the efficiency of the method, all of which is described in

Puterman (1994)

2.3.5. Optimizing TechniquesComparisons

The value iteration algorithm described above is neither the most robust nor the fastest
method to find the optimal policy of a problgffijms, 2003) In fact, in the infinite planning
horizon the value iteration method finds only the approxinfatgtimal) value function and the
policies related to that. In this regard policy iteration would be considered to be the most robust
method tofind the exact solution to infinite horizon problems. Here robust means that the
algorithm converges very fast, and the number of iterations is practically independent of the state
space (number of states in the model) and varies between 3 &highi§ 2003) The algorithm
needs to solve S (state space) number of linear equations at each it@tatemman 1994;

Tijms, 2003) Thus, this algorithm is not practical for largeale problems due to computer
memory issue¢Tijms, 2003) The same problems of computation and memory issues exists in
the linear programming solution to the MDP problems, because this method also needs solving S
linear equationgTijms, 2003) For these reasons, policy iterations can oyapplied to small

size problemgKristensen et al., 2006)Modified policy iteration combines features of value and
policy iterations toncrease the efficiency of the policy iteration algorithm for lesgale MDPs
(Puterman, 1994)ut the increse in efficiency highly dependent on the structure of the model

(specifically the number of actions in the action sets and state space size).

In general, the largscale problems arise in the case that in order to describe a system in the
MDP many state ariables need to be used. This problem exists in every field; however, it is

especially present in the animal replacement models with many sets of variables to describe the
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variability in the traits and the biology of the animals into the m@datan, 1997; Nielsen and
Kristensen, 2014) This p ob |l em I n t he l'iterature IS re
di me n s i(Kristensen ¢t l.02006and refers to the exponential growth loé tstate space

by addition of state variables into the model. This is a major problem with the policy iteration
algorithm, and to a lesser extent for value iteration method, that needs to solve a series of linear
equations of size |S| by doing matrix irsien. To solve this issue in large animal replacement
problemsKristensen (1987, 1988)eveloped the hierarchical Markov decision processes. This
method combines the computational advantage of thes vdtation method with the exactness

and higher efficiency of the policy iteratio
problem in animal replacement probler{isristensen et al., 2006)This method tries to
decompose the state space and reduce the number of states in the MDP, therefore creates a more
intuitive way of modeling the replacement probleiNielsen and Kristensen, 2014A
replacement problem modeled with the MDP model is usually very large due to inclusion of age
(lactation and days in milk) of animals as statdaldes in the model. This inclusion makes a

very big sparse transition matrix (a matrix with many zero elements), because only transitions
from states at age a to states at age a+1 are pod§ilskensen and Jagrgensen, 2008pwever,

hierarchic Markov decision process modslsivesthe problem in a special way. This approach

does not include age as a state variable, and uses the fact that when replacennsnthe life

cycle of the replacement animal is restaf€dstensen and Jgrgensen, 200@)addition, due to

hierarchy structure, this approachutm distinguish between permanent traits and traits that for

the same animals vary over time. In the hierarchical MDP the model is split into one main
process (founder process) and a series ofpsobesses (also called child processes). Then, the

permanentraits that are constant over time for the same animals but vary among animals are
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defined as state variables of the main process and other variable traits are defined as state
variables of sulprocesses. In this model the main process has the infiat@ipg horizon and

the subprocesses have the finite planning horizon equal to the maximum life span of an animal.
Thus, the sulprocesses take care of the age as the stage length without the need of considering
age as a state variable. The optimizatiechhique of this approach is a mixture of the policy
iteration algorithm at the main process with infinite planning horizon for exact, and efficient
results, and it uses computational feasibility of the value iteration algorithm for finite planning
horizonof large state space at the quiocesses levéKristensen and Jgrgensen, 208lelsen

and Kristensen, 2014kor further discussion and algorithm of hierarchical MDP the reference is
made toKristensen(1987, 1988)and the herd management science b(¢kstensen et al.,

2006)

In contrast to other mathematical programming techniques, there is no standard mathematical
formulation of a DP problem. Rather DP asgeneral type of approach to solve sequential
decision problems and the formulation must be made for each particular sitiiitiem and
Lieberman, 1986) Therefore, in this thesisChapter 3 only the dairy cow replacement

formulations are covered.

2.3.6.Dynamic Programming Model in Optimal Dairy Cow Replacement

2.3.6.1.Characteristicsof Animal ReplacemenfProblems

Many of operational management decisions on dairy farms are naturally sequential and
stochastic. Decisions concerning replacement, insemination, and medical treatment are examples
of these kinds of decisions on dairy farms. The main differences betweeal @noduction and

replacement problems compared to industrial problems was summarizBegnbAri et al.
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(1983) The animal production is a unique problem because of its uniformity (refers to difficulty

in defining and measuring traits, and also the high variability in the traits), availability of
replacements (standard replacement is not alwayiablg, and having a reproductive cycle
(opti mal ti me of repl acement I S influenced
sequential and stochastic nature are well suited as a framework for decision support in this area
(Kristensen and Jgrgensen, 2Q08jditionally introducing relevant state variables into DP
models would be the solution to the mentioned problems in animal replacdiesisnsen et

al., 2006) The focus of this review would be on determining the optimal replacement decisions
in dairy cows as assets in a production precdsmat needs to be observed periodically
(sequentially) and make a decision to whether the current cow state should be replaced
immediately or kept for another stage. This decision depends on the criterion of optimality used,
net return from the presentwpand net returns from the replacement cows (heifdex)kins

and Halter, 1963)

2.3.6.2.History of Dynamic Programming in Dairy Cow Replacement

Few years after introduction of DP models in operations relsekterature the first
introduction of the technique in dairy cow replacements wagddmkins and Halter (1963)
However, White in 1959 was the first introduce and illustrate the technique to solvdasm
decision problems with an application in optimal replacement of laying (Kemedy, 1986)

After that, the most influential, but unrecognized, study on the dairy cow replacement problem
was the dissertation of Giaever in 19@Gistensea et al., 2006) This work with 5 levels of
lactation, 3 levels of calving interval, and 7 levels of milk yield was an influential work
considering the computational power of the time, and mainly due to important considerations

regarding Markov propertin replacement problem@®ielsen and Kristensen, 2014)ver the
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years researchers used the technique to determine optimal replacement ipadigies cows in

different countries and using different stage length and state variables. Generally, the state space
of models of these studies increased through time, and the stage length decreased. This could be
resulted from the available computatiopaiwer by advances in computer and its availability.
There is about 45 studies with a focus on optimal dairy cow replacement in the literature, which
has recently been surveyed in a book chapteNigysen and Kristensen (2014Ylost of the

early published works in the literature are solved by the value iteration algorithm. There were
few early works that used multiple methods (value iteration, policy iteration, and linear
programming) to illustrate each technique. After the introduction of hierarchical MDP in late 80s
by Kristensen (1988)his model usage has increased and total of 11 studies in the literature is
hierarchical modelgNielsen and Kristensen, 2014\ reason of this rather slow adaptation of
hierarchical MDP, even with its efficiency and high performance characteristics, could be
attributedto its difficulty in understanding and modeling. Most of the published hierarchical
models in the literature used the computer software developed for hierarchical modeling in
replacement problems I¥ristensen (2003)From a personal experience even with theilable

software modeling a hierarchical MDP is a demanding task and has a steep learning curve. Here

the focus would be on the recent works that had an influence on the currentGhagpiz( 3.

2.3.6.3.Review of theModels in theDairy Cow Replacement

State variables and stage length are important factors in MDP models. These factors
determine the size, complexity, and the level of details of the model to be used in the decision
making process. There are some commonalities among all the models (noDRalnit
hierarchical MDP) in the literature for describing a cow in the model. These state variables are:

age of a cow (usually as a lactation or parity number), stage of lactation (in terms of month, week
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or days in milk depending on the stage length)gpaacy status (as stage of pregnancy or the
length of calving interval), and milk yield level of a cgwan Arendonk, 1985b; van Arendonk

and Dijkhuizen, 1985; Dé&/ries, 2004) Furthermore, some researchers started to insert the
health status of the cows as a staidableinto the model for more detailed models. The main
health status, studied by the researchers has been mastitis, because of its great impéato
economics and replacement decisiffdsuben et al., 1994; Bar et al., 2008a; b; Cha et al., 2011,
2014; Heikkila et al., 2012)Adding extra states for mastitis (and generally health status) adds to
the state sqce of the model, and hence all the mentioned studies, gktmgkila et al., 2012)

that included mastitis aa state variable used the hierarchical MDP model. Regarding stage
length there is a trend towards smaller time intervals by improving the computational power and
modeling techniques. The earliest models stage lengths were mostly 1 year (or lactation) and
decreased through time. Monthly stage lengths have been the most popular among the
researchers, which is mainly due to small computational time even by using the value iteration
algorithm. A daily stage length was used in two studies, one using the hiembMDP (Nielsen

et al., 2010pand the other using the value iteration algori{ialantari and Cabrera, 2012)

In addition, as it \as mentioned modeling replacement problem is dynamic and stochastic in
nature and therefore needs transition probabilities for different risks involved in the process to
take care of evolution of the process in time. These risks and transitions includiéferant
models are mostly derived from the state variables in the model. Most of the studies have
included transitions on pregnancy, involuntary culling, and milk yiéédg., van Arendonk,

1985; van Arendonk and Dijkhuizen, 1985; De Vries, 2004, 20@6addition, some studies
have also included an abortion risk into their calculati@g., De Vries, 20® Kalantari et al.,

2010)and others introduced different transition probabilities among mastitis akaset al.,
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2014; Houben et al., 1994; Bar et al., 2008a; b; Cha et al., .20h#) of the most important

aspect of the series of studies vgn Arendonk (1985pn detemining optimal replacement

policy in dairy cows, is the 15 classes of milk yield and the transitions among different milk
classes and the probability of having a heifer entering to the herd with a given milk class. This
method was used later by many othesearchers to have milk classes in the model and possible
transitions among different classes at every decision peigt DeLorenzo et al., 1992; Houben

et al., 1994; Haran, 1997; De Vries, 2004; Kalantari et al., 201@ 15 milk production classes

have also been reduced to 5 classes to make a daily DP model more manageable to compare the

effect of different rproductive performances on the herd vgkialantari and Cabrera, 2012)

As it was mentioned DP model uses many economic and probabilistic parameters to find the
optimal policy at the individual cow level. Price relatedrameters include milk price, calf
value, carcass value of the culled cow, replacement heifer cost, veterinary cost, semen cost, feed
costs, and the market interest rate. Probabilistic risks include involuntary culling, milk
production and transition, pgeancy, and abortion. Not all of these parameters have an equal
impact on average herd life (representing the average time that a cow stays in the herd) or the
replacement rate (voluntary culling decided by optimal decisions) in DP models. Different
studies determined that the most important factor affecting replacement rate was the transaction
cost for replacement (difference between carcass value and the price of replacemefuameifer
Arendonk, 1985b; van A&ndonk and Dijkhuizen, 1985; Cardoso et al., 1999; Kalantari et al.,
2010). Average milk production level also has a considerable impact on the replacement in
dairy herdg(Cardoso et al., 1999; Kalantari et al., 2018)20% incrase and decrease in milk
price and involuntary culling rate had a smaller effect on the average hefiddiémtari et al.,

2010)
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2.3.7.Retention Payoff

In the process of determining the optimal replacement policy for dairy cows, MDP (DP)
models also reate an evaluation of the current dairy cow in the magleén total expected
discounted rewards is used as the optimality criterion. Based on the method of calculations the
characteristics of this calculated value for every state cow differs. Futdialpiivy, which is
the difference between expected net present value of cash flow at the current stage (the value of
optimal decision at the current stage) and expected net present value of cash flow for
replacement of the covan Arendonk, 1985b)The lower bound of the calctéal future
profitability is zero, which means that the optimal decision is to replace the cow, and the positive
values represent the expected profit by keeping the cow until the replacement is optimal instead
of immediate replacement. Another way of cahtg the cow values is using retention payoff
(RPO) as was introduced e Vries (2004) This value which iscalculated for every cow state
in the modelis based on comparing the expected net present value of cash flow from keeping a
cow versus expected net present value of cash flow of immediate replacement. The RPO can take
negative and positive values. A negative RPO represents the oppodaosiis of keeping the
cow in the herd until the next decision point, and positive value is the expected value of the cow
in the herdKalantari et al., 2010)Thus, the RPO (or future profitability) could be used to rank
the cows based on their fue expected value and be of an assist in culling decisions on dairy

farms.

Moreover, because RPO evaluates the value of a cow compared to its replacement it has many
other usages than ranking cows for replacement decisions. These examples includegvaluat
the economic value of pregnancy and abor{De Vries, 2006)finding the cost of an extra day

open (Groenendaal et al., 20Q4finding economically optimal voluntary waiting period
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(Inchaisri et al., 2011)to evaluate the economic impact of reproduction performance, such as
estus detection and conception ré@Boichard, 1990; Inchaisri et al., 2011, 2012; Kalantari and
Cabrera, 2012)economic value of lactational treatments ofchinical mastitis(Swinkels et al.,

2005) and economic cost of generic clinical masf{iar et al., 2008a)

The same factors that affect the replacement rate in the DP model also drive the average RPO

detemined by the model. The average RPO indicates the average value of all the cows in the

herd under study. The same change that has a great impact on the replacement rate and average

herd life also affects the RPO greatly (herd average milk productioe, gfrieplacement heifer,

and carcass price). As expected, changes in parameters that increases the replacement rates

results in decreases in average RPO of the cows in théKadehtari et al., 2010)Although, all
these factors affect the abs@walue of the RPO, the important matter for evaluating RPO is to
rank the cows compared to their herd mdt&sahinfar et al., 2014pBnd also notice the RPO

trend throughout the lactatig@®roenendaal et al., 2004)

2.3.8.A Simple Dairy Cow ReplacementDemonstration

A simple example of a dairy cow replacement problem, adapted and modifiegl feeslistic
values) from the fAher (Kriste@menaipat, A@0GHII be prasentedc e 0
and solved using the value iterati@algorithm. In this example the stage length is a year (or
lactation), and cows are described in the model using 5 levels of relative milk production. The
milk production is the milk production of each cow state relative to the herd av&iageté¢r 3.
Transition probabilities of changing a milk class from one lactation to another and the probability
of a heifer entering into one of the milk classes bhased on the assumption of normal milk
curves as described van Arendonk (1985)The original 15 milk classes were reduced to 5 milk

classes irkalartari and Cabrera (2012yvhich will be used in this simple example. Transition

b
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probabilities under two possible decisions of keep and replace are shdailé2.2. Transition
probabilities under the keep decision shows how likely the cows are going to change milk classes
from one year to another. For example, a cow with an average milk class haslailpyodf

0.452 to stay in the same class, 0.238 to change just one class, and 0.036 to change 2 milk classes
(Table2.2). Cows that arén higher and lower classes have a tendency to the average milk class.
Transition probabilities under the replace decision show the probability of a heifer with a specific
milk class entering the herddble2.2). The final component of a replacement problem is the
expected net revenue of different milk production class under keep and replacement decisions.
The net revenue of different hiproduction classes under the keep decision is assumed to
increase linearly from $1700/cow per year for 76% class to $3700/cow per year for 124% class
(linear factor of $500 per each higher class). A constant transaction cost (Replacemént price
calve \aluei carcass value) of $700 was subtracted from the values above to find out the value

of new heifers entering the herd.

Table 2.2. Transition probabilities of moving among different milk classes in curseame
(year) to different or same milk class in the following stage

Current Transition to other milk classes at next  Probability of a heifer at different

relative stage under fAKeep¢ milk classes un
milk class

(%)

76 88 100 112 124 76 88 100 112 124

76 0.302 0.449 0.219 0.029 0.001 0.07 0.24 0.38 0.24 0.07
88 0.117 0.386 0.383 0.106 0.008 0.07 0.24 0.38 0.24 0.07
100 0.036 0.238 0.452 0.238 0.036 0.07 0.24 0.38 0.24 0.07
112 0.008 0.106 0.383 0.386 0.117 0.07 0.24 0.38 0.24 0.07
124 0.001 0.029 0.219 0.449 0.302 0.07 0.24 0.38 0.24 0.07

The value iteration algorithm, as described above, was implemented in the Python language

(Python Software Foundation., 20Qa)solve the dairy replacement problefppendix1 Script
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1). The model was run for 50 stages with a discount factor of 0.85 as it was dé&scrthe

value iteration algorithm and Eq. 2. The present value of the 5 relative milk classes over 50
stages are presentedRigure2.5 panel A. It isobvious that the value stabilized after around 30
stages (30 years) in the future. The difference between these present values shows the relative
value of each state compared to the otliiérstensen et al., 2006)For example, having a cow

with an average milk production (100%) has $865 economic advantage over 12% below average
(88%). Another important result that could be calculated froen résults is the difference
between th&eep and replace values (RA&gure2.5; panel B). This value shows the economic
advantage of keeping a cow sas replacing it. Thus, whenever the RPO value drops below zero

the best decision would be to replace the cow. In this simple example, given the input parameters
used, the | owest mil k class cowbs RP&48( 76 % o
whichis the signal for replacement. The decision for other cows would be to keep them until the

next decision stage.
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Figure 2.5. Convergence of the present value from value function (panel A), and the calculated
retention payoff (RPO = Keep valildReplace value) (panel B) for different relative milk yields.

Should be noticed that this is a simplified example and in real replacement models, besides
milk production many other state variables should be considemesscribe a more realistic cow

in the model.
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2.4.Monte Carlo Simulation

Monte Carlo simulation, generally called stochastic simulation or just a simulation, intends to
estimate the performance measuocé an abstract model built from a given system that is
affected by random input variables. This is usually done to obtain a better understanding of the
system with respect to decision making under uncertainty of the system. In terms of dependent
and indepndent variables the objective of simulation is to describe the distribution and
characteristics of the modeled performance measure (output values; Y), given the distribution
and values of the independent variables (input valugs;XX é ) (RXgsdale, 2012)It
models interrelations among the input variables to exploit the uncertainty in input values towards
better decision making under rigdardaker et al., 2004Monte Carlo methods were first used
to solve physics related problems. In the 1950s, these methods were used in Los Alamos w
working on developing the hydrogen bomb and the term Monte Carlo was coined after a well
known gambling house in the ar@randimarte, 2014)Others(Dijkhuizen and Morris, 1997,
Csaki, 1985haveconnected the term Monte Carlo with the analogy between games of chance in

casinos (e.g., roulette wheel) and the need afaannumbers in the simulation.

Monte Carlo methods are a class of computational algorithms that rely on repeated random
sampling fom specified distributions to compute the distribution of outputs, and have broad
areas of applications in different disciplines. Monte Carlo methods could be separated, but not
fully, into two techniques. These methods are: Monte Carlo sampling and MNiarte
simulation. The former term is relevant when the Monte Carlo sampling is used for
approximating a numerical integral (often multidimensional ardelaved) and some statistical
computing (Brandimarte, 2014)A famous example of applying Monte Carlo sampling is to

estimate” . I n gener al t ndoms sampleng With dhe goal toodstimats a r a
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deterministic valugBrandimarte, 2014) Thus, this way of applying Monte Carlo is to solve
static and deterministic problems. Monte Carlo simulation, on the other hand, accounts for the
dynamics of the systems and entails generating different samples from the model te estimat
probability or an expectation over tim@randimarte, 2014) These methods are not fully
separable because both methods try to estimate a probability or an expectation by generating
random numbers, and in principle any dynamic simulation can be considered as the estimation of
the integral of a possibly quite congated function(Kristensen et al., 2006; Brandimarte,
2014) This distinction between Monte Carlo sampling and simulation is not common in the
literature. For instance, this has not even been mentioned in some other teXtzvoksnd

Kelton, 2007; Banks et al., 2009These textbooks use the Monte Carlo simulation as a general
term to refer to both Monte Carlo sampling and simulation. Thus, in this later view Monte Carlo
simulation could be either classified as static or dynamic based on the way that the model
incorporates the time dimension in the mo@lehw and Kelton, 2007; Banks et al., 2009)

Hereafter, the identifier of static or dynamic is used to define the simulation method.

2.4.1.Monte Carlo Simulation Steps

The building blocks of a typical Monte Carlo silaton following Brandmarte (2014)are

represented ifigure2.6.

1. Pseuderandom number generationThe cornerstone of any Monte Carlo method is the
ability to efficiently generate streams of random numbers from a uniform distribution Ui
(0, 1) because the output of systesrhighly dependent on this first step. Assuming a
computer is used to generate random numbers, there are a number of methods that could
be used to generate random numbers. The most widely used method in different

programming libraries (packages) is the mixed congruential method. The method
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generates a sequence of random numbers by calculating the next one from the last one,
given an initialrandom number (called the seéH)llier and Lieberman, 1986Based on

the method, the numbers generated should be called psmudiom numbers (instead of
random numbers), due to the predictability and reproducibility of éinergted numbers

with computergHillier and Lieberman, 1986; Law and Kelton, 200Fhis fact proves to

be useful in developing, debugging, and reducing the variance of the results in the Monte
Carlo simulation model¢Banks et al., 2009)For brevity, hereinthe term random

number generation is used.

B, . . Domain-specific .
Pseudo-random | {U;} | Transformationto | {X;} P {Yy} . |Estimate
» . »  sample path » Output analysis ————»
number generator random variates 3
generation

Figure 2.6. Monte Carlo simulation building blocks (adapted frBnandimarte (2014)

2. Transformation to random variates. Given the sequence of the generated random
numbers thre is a need to generate random observations from an appropriate
distribution. Generating random numbers from vkelbwn distributions (e.g.,
exponential, uniform, and triangular) or empirical distributions is called random variate
generation, and the mobasic technique used for this generation is called inverse
transform techniquéBanks et al., 2009Ymplementing this technique is straightforward,
but not always the most efficient way to generate random vafiataks et al., 2009)
Using the inverséransform technique potentially one could generate random variates
from any distribution(Banks et al., 2009; Hardaker et al., 200#his technique is a
methodof choice for univariate random variates from continuous distributions when the

cumulative distribution function (CDF) is easily invertible (e.g., exponential, uniform,
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Weibull) (Devroye, 2006)Even though discrete distributions are not invertible, the same
method could be usetb generate random variates. The method can be described
graphically or by using the equations for specific CDF. A graphical representation of the
method in a discrete case for generating random variates from 5 milk classes shown in

Table2.2 is displayed irFigure2.7.
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U (R[0,1])
o
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Figure 2.7. Inversetransform method used to generate random variates from a discrete
distribution of milk classes. The cumulative proli&piof being in 5 milk classes
(relative to the average) is determined when a random number is drawn (0.82) its
corresponding milk class number is determined from the x axis according to the CDF.

The first step is to plot the CDF of the target functiore@ted fromTable 2.2). The

second step is to generate a random number U1(0,1). The last step is matching the Ul
against the appropriatvalue on the horizontal axis. In this example by drawing 0.82, the
corresponding milk class number is 4. In a continuous case, this translates to setting the
inverse of the CDF function equal to Ul and to solve the equation for x. Thus, in both
cases gegrated variates from distributions are in direct proportion to the respective

probability of the target distribution function. A similar approach with interpolation can
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be used for empirical distributions, which is explainedhmapter 6 In this method the
shape of the target distribution is not considered for random variate generation, which
means that for heawvtailed distributions this approach uses a large number of samples to
generate the target distributigHardaker et al., 2004)lechniques used to decrease the
number of required sampling in the Monte Carlo simulation are called variance reduction
methods (such as Latin hypercube sampling) that will be briefly discussed later.

In addition, in the cases that the CDF is not invertible or computationally expensive and
difficult to calculate there are other methods available. For some-km@in
distributions direct transformation could be used, which does not require sampling. For
example, BoxMiller is a method for generating random variates from normal
distribution. When the direct methods are computationally expensive or unavailable the
method called jection-sampling could be used. This method uses the probability density
function (PDF instead of CDF) of the target distribution. In summary, in this method, an
alternative probability distribution (G) is needed, which has an efficient random number
geneator algorithm and close to the target probability distribution function (F). Then, a
random number from G is drawn aisdcompared to F, which will be accepted only if it
falls under the F distribution, otherwise rejeci{@lbinstein and Kroese, 2007)he
efficiency of this method depends on the closeness of G and F (target PDF). There are
other techniques that could be used for generating random variates and the reference is
made to theMonte Carlo simulations textbookPevroye, 2006; Law and Kelton, 2007;
Rubinstein and Kroese, 2007)

There are also some generic methods called Markov chain Monte Carlo (MCMC) for

generating samples from any arbitrary distribution and also from multivariate
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distributions(Kristensen et al., 2006; Rubinstein and Kroese, 20079 most prominent
MCMC algorithms are Metropoliblasting and Gibbs sample(Rubinstein and Kroese,

2007)

3. Domain-Specific sample path generatioithis step is concerned with building a realistic
computer representation of the underlyjdqy st emdés characteristics.
the conceptual models built from the system, degree of details included, and the objective
of the model. Thus, unlike previous steps, this one is specific to the system, the goal of
the study, and the pradgh at hand. It uses sets of input parameters to define and initialize
the system and a set of decision rules that govern the behavior of the model with respect
to the parametergKristensen et al., 2006for exampleto model a dairy cownilk
production, body weight, and reproductive status can be used to describe a cow and the
cutoff days in milk for breedinganbe used asa decision ruleln this step streams of
random variates generated in the previous step ({Xj}) are used to generate different
replications of the system. Each replication generated in this step is called the sample
path ortherealization of the simulated system.

4. Output analysis. Before using and recommending the results from the simulation
verification and validation of the results should be an integral part of every simulation
study. Verification checks the conceptual model to be correctly implemented in the
model, andconsist of debugging and checking the computer implementation. Validation
attempts to confirm if the model is an accurate representation of the {Bs8ks et al.,

2009) Compared to verification, validation is more complicated and both objective and
suljective approaches are available fo{Storensen, 19900bjective validation of the

model would include statistical tests to find the degree ofeageat between the model
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outputs and the real farm performance (e.g., goodufefiistests). However, in practice,

it might be unfeasible to perform a field trial in parallel to the model. Thus, as it happens
in most livestock models in the literatu(8orensen, 1990)subjective validation is
commonly used. Model outputs are contrasted against original data, industry averages,
and expert opinions in ¢hfield. Visual graphs could also be used to compare the results

with expected results.

After checking the model the last step is to summarize the results into estimates, usually
in the form of point estimateandconfidence intervals. In this step itimportant to find

out the number of replications needed to gain the degree of precision in the point
estimate. Statistics formulas are available to calculate the number of replication needed to
obtain a specific precision, which directly relates to theimarm tolerable margin of

error in the study (reference on these calculations are made to tex(Rodksstein and
Kroese, 2007; Banks et al., 2009ensitivity analysis could also be used to explore the

behavior of the mdel usng different input parameters.

2.4.2 Variance Reduction M ethods

Monte Carlo simulation methods are generally flexible and inherently inefficient. As it was
discussed in output analysis (and also random variate generation), these methods require a large
number of replications to acquire the level of precision needed by the(8rahdimarte, 2014)
Generally, the precision of an estimate can be improved by increasing the number of sample size
(n; replications). However, this would be an inefficient way to improve the precision of an
estimate, because the width ofanfidence interval around an estimate decreases with respect to

I n (Brandimarte, 2014)This inefficiency in the case of big models makes a difference with
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respect to the computational time needed to get precise information. Thus, the goal of variance
reducton methods is to obtain precise and relevant informati@ngaten number of replications

(n) without introducing any bias in the estimator.

These variance reduction strategies could either be tricks to improve the sampling from a
distribution or more sophisticated techniques used to synchronize the random number streams of
a model for more relevant output analyBrandimarte, 2014)The former strategy tries to
improve the efficiency of sampling compared to invdraasform algorithm. Here, just the Latin
hypercube sampling among stratified sampling methods will be briefly discussed. In this
technique the target CDF is divided imtdsampling size or replications numbers) gopabable
intervals (and hence the name stratified), which will be followed by two step processes of first
selecting the interval using a random number and second generating a second random number to
determinewhere within the selected interval it fal{glardaker et al., 2004)This technique
covers two drawbacks of inversansfom method: 1) the pure randomness of random number
generation might not provide a uniform profile from the target CDF, and 2) for getting a precise
estimate certain portions of the distribution might carry more weight than othe(hbéres and

Lieberman, 1986)

The second strategy is to use synchronized common random nyfRbknsstein and Kroese,
2007; Banks et al., 2009n this method, the same stream of random numbers (common random
numkers) is used for the same purposes (synchronized) among different scenarios of the model.
This means that same stream of random numbers are used for running different scenarios, which
in turn increases the relevancy of output analysis among differentrigsema sensitivity

analysis. Thus, it diminishes the need for a large number of replications to reduce the standard



57

deviation of outcomes, which results in more precise estimates. More details on using this

technique can be found @hapter 6

2.4.3.A Simple Monte Carlo Example in Dairy Cows

A simple static Monte Carlo simulation of dairy cows demonstrates the process. For this
purpose the methodologicdkps as illustrated iRigure2.2 will be followed. The objective is to
find the distribution of annual income over feed costs (IOFGh@fcows in a typical herd with
the following assumptions. Annual IOFC is defined as (milk yield x milk pridéged cost). To
simplify the example it is further assumed that cows are classified into 5 milk production classes
(Figure 2.3) regardless of their lactation number. Then, the stochastic inputs are the milk price,

milk yield, and the feed costs.

The next step is to analyze relavaata from the past on the parameters in the system to find
the input distribution of our uncertain variables. For example, in the case of milk price the
historical data from 2013 and 2014 are used to find the distribution of average milk price.
Subsequetly, different distributions were tried to find the best distribution that can describe the
historical distribution of the milk pricdzigure2.8 shows the distribution of historical milk price
with the best fitted distribution using Kolmogor®mirnov goodnesef-fit test (beta
distribution; square error = 0.0223:vplue>0.15; the null hypothesis that milk prices are

distributed basedrobeta distribution cannot be rejected).
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Figure 2.8. Distribution of historical milk price (histogram) and the best fitted distribution on the
data (beta distribution expression = 19+7xbeta (0.589, 0.825)).

For annual milk yield two scenarios of 5 discrete milk classes as describegure2.7 and
continuous milk class from N~(10,000, 1,300) is compared. Finally, the annual feed cost ($/cow

per year) is assumed to follow N~(850,30).

The written scriptin Python Appendix 1Script 2) was verified to make sure the program
performs as expected. Next, the simulation was run for 1,000 herds of eachO@@hcaws on
separate streams of random numbers. This is a hypothetical example and therefore a validation of
result is ignored. The cumulative distribution function of IOFC is shoviigare2.9. The IOFC
of 1,000 simulated cows from one herd under two scenarios of annual milk production
(continuous normal vs. 5 discrete milk classes) is displayed in parfagiie 2.9. The CDF
curve with 5 discrete classes clearly replicates the CDIHgare 2.7 based on the available
discrete probabilities, which demonstrate the Monte Carlo sampling technique @{nverse

transform technique).
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Figure 2.9. Panel A: cumulative distribution function from 1,000 replications of the cows in one
herd under two scenarios of annual milk production (5 discrete milk production classes from
Table 2.2 vs. continuous milk production from N~(10,000,1,300)). Panel B: cumulative
distribution function obtained from averaging 1,000 replications of cows over 1,000 herds under
three scenarios (milk price diditited according to beta distribution Figure 2.8 vs. uniform
distribution of milk price U~[19,26] vs. beta distributed milk price wiiea milk production
followed normal distribution described above).

The CDF of the IOFC obtained by averaging over 1,000 cows from 1,000 herds running with
three scenarios (comparison between different distribution of milk price (beta vs. uniform) and
bet distributed milk price with annual normally distributed milk production) is illustrated in
Figure2.9 panel B. It is clear that whening the uniform distribution for milk price the CDF is

linear and it gives the same weight to different milk prices. However, the weights of milk prices

are captured when using the beta distribution. The simulation runs under both 5 milk production
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classesaind normal distribution results almost in the same CDF and statistics. The different milk
price distribution approaches have an implication in potential deasaking. The average
IOFC (x1sd) under beta distribution was 1,339.8 (x220) and under undmtnibution was
1,393 (£198). Using a uniform distribution resulted in an overestimation of the overall IOFC.
This is a simple hypothetical example, but it shows the power of the Monte Carlo simulation in

sensitivity analysis and in understanding theesystinder different conditions.

2.4.4.Monte Carlo Simulation in Dairy Herd Industry

Monte Carlo simulation has been used by many researchers (more than 100 studies) in almost
every aspect of the dairy herd management to better understand the dairy stystedifferent
management areas of the dairy system (e.g., reproduction, physiology, and genetics), and to
explore new emerging technologies and their potential benefits and costs in the dairy industry.
Another reasormf adapting this technique among dairy msbers from different fields, could
be attributed to the accessibility of udgendly software packages (@Risk in Microsoft Excel or
prebuilt models from other researchers DairyORAGMarsh, 1986)r SimHerd(Sorensen et

al., 1992) to implement the model in less time and with no or low cost.

The number of studies that have used this modeling technique is staggering and here is
classified to better understand their underlying modeling techniques and applications. Models
could be dpamicor static. Also, Monte Carlo models in dairy could be classified by the level of
simulation in the hierarchylT@ble2.1); cow levelsimulation vs. herd level simulation. Another
classification could be based on the software used for modelingpuiPresoftware packages or

standalone applications coded by the modeler.
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A dynamic, stochastic simulation model developedditgnacu et al. (198@)ad a focus on
reproducdbn in dairy herds, and was one of the earliest complete herd stochastic models. Later,
many dynamic, stochastic simulation models were used to explore the consequences of
biological and management changes on the output of dairy sydeipers, 1982; Congleton et
al., 1984; Marsh, 1986; Dijkhuizen et al., 1986; Sorensen et al., 1992; Allore et al.,.1868b)
of these early models created a computer model that was subsequently used by the same or other
researchers tetudy different managerial problems on dairy herds. For instance, DairyORACLE
(Marsh, 1986) and SimHerdSorensen et al., 1992re among the models used in different

studies as the framework.

A brief description of the SimHerd, the most complete herd simulagonework extensively
used in the literature, is provided. SimHerd is a dynamic, stochastic Monte Carlo simulation
framework with weekly time steps developed to imitate a dairy herd (adults and young stock) to
investigate the effect of different managemerdategiegSorensen et al., 1992 this model, 9
state variables were used to dése an individual animal in a herd (age, lactation stage, lactation
number, estrus status, pregnancy status, decision for culling, milk production potential, milk
production, and live weight). All the discrete events at a cow level were triggered stadlyast
and governed the herd structure and dynamics. These events included heat detection, pregnancy,
fetal death, sex and viabilities of the calf, involuntary culling, and death. Moreover, the herd
structure and the production level were controlled bgteof decision variables, which defined a
certain production system or a specific management stréBgensen et al., 1992%ince the
first version of the SimHerd (Sorensen et al., 1993)ifferent versions have been released
through different research studies. SimHer(Oi$tergaard et al., 2008¥ded the feedingealth

production complex (potential effect of metabolic and reproductive diseases on the milk
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production ad feed intake) to the SimHerd | framework. SimHerd(@istergaard et al., 2003)

added the risk faors and effects of milk fever to the previous version. The framework was
moreover extended by addition of somatic cell count and mastitis to create the SimHerd IV
(Dstergaard et al., 2005pimHerd V was developed by separating the genetic and permanent
environment of milk yield potential and settg t he cal f mil k yield po

averaggEttema et al., 2011)

Monte Carlo simulation has been used to study different aspects of dairy herd systems. Some
instances (a subset) of the models in different arkdairy herd management follows: Different
disease controls and its associated decisions and (édte et al., 1998b; Ostergaard et al.,
2000; Groenendaal et al., 2002; Kudahl et al., 2007; Steeneveld et al., 2007; Nielsen et al., 2011;
Foddai et al., 2014)culling decisiongMarsh et al., 1987; Dijkhuizen and Stelwagen, 1988;
Kristensen and Thysen, 199Jgvaluging economic traits, choosing selection strategies, and
genomic selectiorfNielsen et al., 2004; Kulak et al., 2004; de Roos et al., 2011; Ettema et al.,
2011; Lillehammer et al., 2011; Axelsson et al., 2013; Hjorta et al., 20&®&) dairy technology
analysis(Hyde and Engel, 2002; Bewley, 200&nalysis of different parameters related to
reproductive performanc@ltenacu et al.,, 1980; Montaldo, 1996; Plaizier et al., 1997, 1998;
Allore and Erb, 2000; Olynk and Wolf, 2008; Inchaisri et al., 2010; Rmafteur et al., 2013,
Galvao et al., 2013; Rutten et al., 201dnd nutrition and fekng systemgPecsok et al., 1992;
Williams and Oltenacu, 1992; Bierre and Thraen, 1999The models listed above are all
stochastic Monte Carlo models, however; some of them are static (no time inclusion) and others
dynamic (time as a variable in the model). A brief list of studies with some of their

characteristics is summarizedTiable2.3.
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Table 2.3. Brief modeling characteristics and application of subset of stochastidasionu
studies in dairy industry (chronologically ordered).

Study

Oltenacu et al.
(1980)

Kuipers (1982)

Bailie (1982)

Congleton et al.

(1984)

Marsh (1986)

Dijkhuizen et al.

(1986)

Marsh et al. (1987)

Dijkhuizen and
Stelwagen (1988)

Skidmore (1990)

Sorensen et al.

(1992)

Schrooten and Van
Arendonk (1992)

Sgrensen et al.

(1993)

Ostergaard et al.

(1996)

Plaizier et al. (1997

Allore et al. (1998b)

Modeling
characteristics'

Dynamic, herd,

day

Dynamic, herd,

month

Dynamic, herd,

month

Dynamic, herd,

year

Dynamic, herd,

year

Dynamic, herd,

20 days

Dynamic, herd,

year

Dynamic, herd,

20 days

Dynamic, herd,

year

Dynamic, herd,

week

Static,cow

Dynamic, herd,

week

Dynamic, herd,

week

Dynamic, herd,

week

Dynamic, herd,
variable based on

events

Used software
GASF
Coded
Coded

GASP

CodedC
(Developed

DairyORACLE)
CodedFortran 77
DairyORACLE®
CodedFortran 77

CodedFortran 4.1

CodedTurbo

Pascal (developed

SimHerd I)

?

SimHerd |

SimHerd |

SimHerd |

CodedC/C++
(developed
SIMMAST)

Application

Reproductive process

Comparing selection and
culling decisions

Breeding management
efficiency

Determining the profitability
of extending cow herd life

Evaluation of managerial
changes (reproductive, health

Economic evaluation of
management decision with
respecto production,
reproduction, and culling,
Economic evaluation of 4
culling policies

Economic evaluation of 4
culling policies

Evaluation of managerial
changes ( reproductive,
production)

Evaluation of different feedg
regimes, and different culling
and reproductive strategies
Genetic improvement with
Multiple Ovulation and
Embryo Transfer (MOET)
Effect of different dry period
lengths

Estimation of technical and
economic effects of usg one
vs. multiple TMR feeding
groups

Relationship between
measures of reproductive
perfomance and net revenue

Effect of mastitison
composition of bulk tank milk
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St-Pierre and
Thraen (1999)

Allore and Erb
(2000)

Bargh (2000)

Ostergaard et al.

(2000)

De Vries (2001)

Groenendaal et al.

(2002)

Hyde and Engel

(2002)

@stergard et al.

(2003)

Sgrensen and

@stergaard (2003)

Nielsen et al. (2004

@stergaard et al.

(2005)

Ettema and

@stergaard (2006)

Steeneveld et al.

(2007)

Modeling
characteristics'

Static, cow

Dynamic, herd,
day

Dynamic, cow,
day

Dynamc, herd,
week

Dynamic, hed,
day

Dynamic, herd,
months

Static, cow

Dynamic, herd,
week

Dynamic, herd,
week

Dynamic, herd,
week

Dynamic, herd,
week

Dynamic, herd,
week

Static, cow

Used software

?

SIMMAST+SIMH

EALTH
(developed
DairySim)

AscL?

Developed
SimHerd I

CodedC++
(developed
DASIMO)

VBA + Microsoft

Excel

@Risk adédin
Microsoft Excel

Developed
SimHerd Il

Developed
SimHerd Il

SimHerd llI

Developed
SimHerd IV

SimHerd Il

@Risk addin
Microsoft Excel

64

Application

Estimating optimum allocatior
of NE_ and CP

Evaluating the effect of
extending VWP by 100 days
on disorders and health issue
(e.g., mastitis, ketosis, milk
fever, dystocia, retained
placenta)

Predicting the nutritional
effects on milk fatty acid
profile

Evaluation of managerial
changes in feeding, health an
production

Studying statistical process
control charts in simulated
dairy herds

Evaluation of economic and
epidemiological impacts of
different control strategies for
Johneds disea
Calculating brealeven value
for robotic milking systems
Evaluating the long term effec
of control strategies against
milk fever

Analyzing the economic
consequences of postponed
first insemination with
different reproductive
performance

Driving economic values for
different traits

Evaluating different pathogen
specific mastitis control
strategies

Evaluating prevention and
control strategies of clinical
lameness with its economic
impacts

Economic effects of treating
chronic subclinical mstitis
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Bewley (2008)

Olynk and Wolf
(2009)

Bruijnis et al.
(2010)

Inchaisri et al.
(2010)

Inchaisri et al.
(2011)

Sgrensen et al.

Modeling
characteristics'

Static, cow

Static, cow

Dynamic, herd,
month

Dynamic, herd,
week

Dynamic, herd,
week

Dynamic, Cow,

Used software

@Risk adédin
Microsoft Excel

@Risk adédin
Microsoft Excel

@Risk adédin
Microsoft Excel
@Risk adédin
Microsoft Excel

@Risk adédin
Microsoft Excel

65

Application

Examining technical and
economic feasility of
automated body condition
scoring

Economic and risk analysis of
artificial insemination with
Ovsynch and Cosynch
protocols

Economic effects of foot
disorders in dairy cattle
Evaluating economic
consegences of reproductive
performance scenarios
Analysis of economically
optimized voluntary waiting
period

Effect of using sexed semen ¢

(2011) week ADAM genetic gain in commercial
herds
Effect of genomic selection or
de Roos et al. . g
Static, cow ? genetic improvement and
(2011) : .
inbreeding
Identifying the importance of
. Dynamic, herd, Developed genetic progress in milk yield
Ettema etal. (2011, week SimHerd V when evaluating different
reproductive strategies
Quantifying the genetic gains
Weigel et al. (2012) Static, cow ? of using genomic testing on
replacement heifers
Dvnamic. herd Comparing economic outcom
Galvéo et al. (2013; d;’ ' ' Netlogd of different reproductive
y programs
. Reproductive process sensitiy
Brun-Lafleur etal. Dynamic, herd, " to milk yield and body
(2013) day o
condition score
. . : Evaluating the return on
Rutten et al. (2014) Dynamic, cow, @.R'Sk addin investment of activity monitor:
week Microsoft Excel :
for better estrous detection
Comparing genetic gain and
Yin et al. (2014) Static, cow oMSim’ inbreeding coefficients of dair

cattle using natural service
bulls
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Modeling

Study characteristics'

Used software Application

Evaluating genomit e s t i
interaction with reproductive

surplus

! Model characteristics including time dependency (dynamic vs. static), simulation level (herd vs.

cow), and time steps in dynamic simulations

Dynamic, herd,  SimHerd IV and

Hjortg et al. (2015) | <, ADAM

2 General Activity Simulation Program is specialized purpisailation language
3 With some modifications from the original DairyORACIKHarsh, 1986)

* Advanced Continuous Simulation Language used for modeling and evaluating performance of
time-dependent continuous systems

> ADAM is a computer stochastic simulation package writteF@RTRAN 95for modeling
selective breeding schemdstp://adam.agrsci.dk/

® A multi-agent programmable modeling environméttty(s://ccl.northwestern.edu/netloyo/

" QTL and Marker simulator for simulating large scale genotype data
(http://www.aps.uoguelph.ca/~msargol/gmsim/)

? The programming language is not known

All of these models follow the building blocks of the Monte Carlo simulation as described in
Figure 2.6. However, what makes the structure of these models different among studies is the
domainspecific knowledge representation, which models the sample paths or realization (step 3
in Figure 2.6). Common state variables to describe a cow in these studies were traits related to
production (e.g., milk production potential, %fat, agbrotein), reproduction (e.g., gestation
length, days dry, and days open), nutrition (e.g. DMI, nutrient requirements), and age related
traits (e.g., age, lactation number, DIM). However, some studies had extra state variables to
describe exactly the prtgm to be solved by the model. For example, a model developed by
Allore et al. (1998)used extra state variables to describe mastigsesaelated to different
pathogens and the treatments that the cow received. Furthermore, in dynamic models a cow

proceeds through time steps (e.g., monthly, weekly, or daily), which would trigger different

events in the model. In turn, these events upclatewd s char acteri sti cs. E v e
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are also similar and relates to mainly reproductive cycles of a dairy cow. These events include:
calving, ovulation, estrus detection, service, conception, and abdB®rvries, 2001) Other

events relate to the involuntary culling, voluntary culling, and mortality, which alongside the
reproductive events shape the herd structure. Another factor in these simulations isicegut p

and costs. These factors vary dramatically among studies, and usually are set to some default
values instead of drawing them randomly. Keeping some factors deterministic is a usual act in
stochastic models, to focus on important aspects of the sysiefdme studied without

unnecssarily cluttering the results.

In the following sections some of the studies with different application in the dairy industry
are reviewed. The emphasis is on dynamic stochastic models that were used as a reference in

Chapter &of this thesis.

2.4.4.1 Health and DiseaseControl

Many studies have used simulations to obtain extra knowledge about specific treatment or
control of dairy cow diseases. Mastitis has biersubject of many studig@llore et al., 1998;
@stergaard et al., 2005; Steeneveld et al.,, 2011; Hagnéstdeen and Ostergaard, 2009)
which are used as an example of disease models. A stochastic computer model named
SIMMAST was developed, validatddllore et al., 1998h)and subsequently used to evaluate
different strategies to control mastitidllore et al., 1998a) The SIMMAST is a daily step
dynamic, stochastic simulation model written in the C language to simulate intramammary
infections caused by different strains of pathogensstiratiegies to lower the somatic cell count
of the bulk tank(Allore et al., 1998b; a)The SIMMAST was run for 2 years under 7 possible

combinations of mastitis preventive strategies, lactation therapy, and dry cow antibiotic therapy
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(Allore et al., 1998a)The results showed that no single factor strategy was dominant and the
best results were achieved using a combination of scen@ilose et al., 1998a)Few years

later in a similar stud@stergaard et al. (20P&sed the SimHerd IV with weekly steps to run an
extensive sensitivity analysis with more pathogens and mastitis typealtbemet al. (1998a)
study. Because the model was implemented on top of SimHerd framework, it was able to
account for the interaction between differemanagement strategies (e.g., reproduction, culling)
and mastitis control strategies at the herd level which was not possible in previous models
(Dstergaard et al., 2005This model was further used to examine the economic impact of
reduction in the incidence of clinical mastitis in dairy hetdagnestarNielsen and Ostergaard,
2009) Economic impats of treatment chronic subclinical mastitis caused by one pathogen were
estimated in a static stochastic simulation using Microsoft Excel @Risknaddftware
(Steeneveld et al., 20Q7Comparing to previous models, this model was much simpler, less

detailed, and at the cow level (as opposed to herd level in the previous study).

Other diseases have also been studied in the literature such &s&shn di sease CC
(Groenendaal et al., 20Q2jilk fever(dstergaard et al., 20Q3)ovine viraldiarrhea(Viet et al.,

2004) and foot disorder&ruijnis et al., 201Q)

2.4.4.2.Culling Decisions

Culling decision has a great i mpact on far mo
in section2.3) could be used to find the optimal economical replacement policies in herds.
However, to be able to compare different practical culling policies in dairy farm stochastic
simulations have been us@darsh et al., 1987; Dijkhuizen and Stelwagen, 1988th models

used 4 different culling strategies to cover a variety of insemination and culling policies that
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were practical. Two policies were basmta single predefined coff point of service (165 and

250 days after calving), and the other two more restrictive options varied according to the milk
production level and stage of lactation (different combination of milk production level and days
after calving (Marsh ¢ al., 1987). Similar policies with different cudff points and milk
production level and stage of lactation, including some optimal policies found in a DP model
were used in another study byjkhuizen and Stelwagen (198&jor the comparisonglarsh et

al. (1987)used a previously developed dynamic, stochastic simulation model, DairyORACLE
(Marsh, 1986) The results showed that for maximum profit the culling policy should not be too
restridive. Although, these strategies decreased the calving interval, they increased the
replacement rate and therefore had a negative impact on the profitability. The study suggested
that, in the US, cows should be bred until 250 days after calving as lahg &sv producing

cows were culled for low production irrespective of reproductive s{itassh et al., 1987)

Similar dynamic, stochastic simulation study was conducted in the Netherland with similar 4
culling policies as abovéDijkhuizen and Stelwagen, 1988)hey concluded that at <50% heat
detection and < 40% conception rate, there is no value of cullingaie based on the
combined policy based on poor productive and reproductive performance. However, they found
that in better performing herds making culling policies based on a more restricted measure of
production and reproduction adds to the profitabihtya dairy herdDijkhuizen and Stelwagen,

1988)

The Monte Carlo stochastic simulation approhak been used to calculate the total expected
net returns during the next year and that value was used for ranking ardmstensen and
Thysen (1991fompared the decisions being made by DP and stochastic simulation and reported

insignificant difference between the two models.



70

2.4.4.3.Animal Breedingand Genetics

Studies in animal breeding and genetics, using stochastic simuledéinrbe divided into 2
types: 1) evaluating the economic value of important traits 2) evaluating the value of different

selection strategies.

Nielsen et al. (2004andKulak et al. (2004used the SimHerd dynamic simulation model to
evaluate the economic values of different production andpnoduction traitsunder different
farm scenarios. The scenarios were different based on the herd size, level of the trait, prices, and
presence of milk quota. Energy corrected milk, conception rate, mastitis, body weight, and
involuntary culling are examples of the traitsluded in both studies. The evaluated economic
value for all the traits related to diseases was negative, and the absolute value depended on the

severity of the cases.

Since the availability of the genomics selection many different studies have explnedys
that this technology could potentially improve genetic gain (due to selecting accurately young
cows that lead to shorter generation interval) and its effect on inbreeding compared to progeny
testing in dairy cowgde Roos et al., 2011For this purpose a closed nucleus herd with an
annual birth number of 1,000 males and females werelaieaduunder two selection criteria of
progeny test and genomic selectigie Roos et al., 2011Running static, stochastic simulation
the study found that genomic selection would increase the rate of genetic gain (+30%/ yr
compared to progeny test) and decrease the rate of inbreeding per gerjdeattoos et al.,
2011) Similar results regarding the better genetic gain in genomic selection at lower rate of
inbreeding was found in anah study using static, stochastic Monte Carlo simulation

(Lillehammer et al., 2011IJhese simulation studies showed the implications and potential of



71

using genomic selection in improving genetic gain of testing sires and dams in nucleus herds.
Other researchetsied to evaluate the use the genomic testing technology in commercial dairy
farms for applying genotyping to test replacement animals for selection and culling decisions
(Weigel et al., 2012; De Vries and Salfer, 20I3)e advantage of gemic testing is the ability

to accurately identify superior females and males after birth, which consequently helps the
farmers make better informed breeding and culling decisions based on the objective of the herd
(De Vries and Salfer, 201.3Both studies used static Monte Carlo simulation model to test the
percentagef animals selected and the availability of prior information about the animals. Both
studies found that the gain from genomic testing of heifers exceeded the cost of test (cost
effective), especially when the pedigree and phenotypic information wetakdedor the young
animals and small fraction of the young population needed to be {&¢&gel et al., 2012; De

Vries and Salfer, 2013)

2.4.4.4 Dairy TechnologyAnalysis

New technology is being introduced to the dairy industry on a rechdars. These
technologies could be in genetics (discussed above), repradu@iscussed later), and
production Simulation has always played an important role to explore thebeosfit and
feasibility of a new technology with minimal cost. For examptfyde and Egel (2002)
estimated the breakeven value of a robotic milking systemBanwdey (2008)examined tk
economic feasibility of automated body condition scoring in dairy cattle using static Monte Carlo
simulation. Both models used @Risk addor Microsoft Excel to build the model. Both models
included stochasticity in economic variables and some pragtuctiaracteristics of herd with

different sizes to obtain a good estimate of the economic value of using these new techniques.
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2.4.4.5.ReproductivePerformance

As it was discussed, the first important dynamic, stochastic simulation model was modeling
the reprodudbn in dairy cows(Oltenacu et al., 1980)The model used nexvent scheduling
method to model four reproductive related events on dairy herds (i.e., parturition, ovulation,
embryonic loss and replacement). This method schedules all the events that could happen to a
cow at day 0 of the simulation and update attributes of the coesenvbr an event occurred. For
example, after parturition cows should start the ovulation, which followed a lognormal
distribution(Oltenacu et al., 1980yiven the cow survived the early lactation risk of culling and
diseases. This method and the parameters and distributions used in this study was later used by
other researchers wmulate dairy herds to study the economic impact of factors related to the
reproductive performance on dairy hefddarsh et al., 1987; Kinsel, 1998; De Vries, 2001)

Detail of the nextevent scheduling approach will be discusse@hapter 6

Many models have been built to study different aspects of reproductive performance and its
effect on the farmdbés pr ofsihave iocused brythe inkportant e x a m
factors that have a great impact on overall reproductive performance (e.g., conception rate, estrus
detection ratefInchaisri et al., 2010Q) others on evaluating the economic value of different
reproductive protocols and prograif@lynk and Wolf, 2009; Galvao et al., 2013; Rutten et al.,

2014) and few studies on the potential implications of dry periods or determining the optimum

length of voluntary waiting periofHalasa et al., 2010; Inchaisri et al., 2011)

Inchaisri et al. (2010pnalyzed economic value of 3 different reproductive performance
scenarios (good, average, and poor), and explored the impacts of reproductive factors (e.g.,

ovulation rate, estrus detection rate, cotiogprate, incidence rate of postpartum disorders,
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voluntary waiting period) on the final economic value. The scenarios were built by changing
important factors. For example, the conception rate of a good, average, and poor scenario was
0.7, 0.5, and 0.3espectively. Using static Monte Carlo simulation built in @Risk Exceliadd

they showed that the economic | oss due to poo
total loss compared to a good performance. Important economic factors on treucapeo

efficiency were involuntary culling cost and revenue from milk production. Variation of
conception rate, estrus detection rate, and voluntary waiting period had a large impact on the

overall economic value of a given scendti@haisri et al., 2010)

Many different reproductive management programs (e.g., Ovsy@olsynch, Double
Ovsynch) have been developed and introduced to the farmers over the years. Given the large
numbers of such programs, economic assessments of these programs are beneficial to help
decision makers choose economically optimal progrégdignk and Wolf, 2009)In a study by
Olynk and Wolf (2009) herds under Ovsyih and Cosynch reproductive managements were
simulated using @Risk Excel adtd Then, using the stochastic dominance methods the best
programs were identified. The study showed that both Ovsynch and Cosynch were preferred over
heat detection and farmerd managers would prefer Ovsynch to Cosynch, regardless of the
attitude towards riskOlynk and Wolf, 2009)In another study using dynamic, stochastic Monte
Carlo simulationGalvao et al. (2013)id a comprehensive study on comparing 100% timed
artificial insemination, heat detection, and combination of synchronization and heat detection. In
this study PresyneBvsynch was used for the first insemination and Ovsynch for second and
subsequent services. The results were evaluated under 2 levels of important factors on the
reproductive performance of herd such as estrus detection rate and its accuracy, compliance of

the reproductive protocol, and milk price. In this study a daily model simulated 1,000 cows
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using Netlogo software and ran until steatigte. The results showed that regardless of the
levels the combined program with 60% estrus detection rate alwaysfoutped the 100%
timed artificial insemination protocdlGalvéo et al., 2013)Further discussion of thactual

economic value of different reproductive protocols can be fouthapter 5

Heat detection is one of the factors that affect reproductive performance. The average
efficiency of visual estrus detection varies between 40 to 55% among s{Rdigen et al.,
2014) Activity monitors are automated estrus detection systems that try to improve this
efficiency by using sensors and the behacltange in dairy cattle. These systems are expensive
and economic feasibility of such systems seems appropriate for large upfront investuters.
et al. (2014 used dynamic, stochastic simulation to explore the feasibility of such investment. In
that study, a 13@ow herd was simulated under two scenarios of visual heat det€¢60% rate)
and activity meters (80% sensitivity; 95% specificity). A 11% internal rate of return for investing
in activity meters were found in the study and the driving factor was the visual estrus detection

rate(Rutten et al., 2014)

2.4.4.6.Nutrition and Grouping Strategies

Considering that the field trials in nutrition studies are the norm, the number of simulation
models in wmtrition is much smaller than other fields. For instance, simulation was used to
compare different grouping strategi@¥illiams and Oltenacu, 992). In that study a dynamic
simulation model was used to compare 7 different strategies to group the cows for feeding and its
impact on the income over feed coff®FC). These strategies were: 1) energy and protein
requirements per kg of dry mattettake, 2) required energy and protein per kg of NDF, 3) DIM,

4) test day milk, 5) test day fat corrected milk, 6) kilograms of fat corrected milk per kg of
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BW® "> (dairy merit), and 7) dairy merit weighted by DIM. Each of these strategies was tested
under2 or 3 feeding groups after running the model for 10 years. The study showed that in
terms of annualOFC the most effective strategies were those that grouped the cows based on
the nutrient concentrations in terms of DMI or NDF (strategies 1 and 27 oftked cluster
method (McGilliard et al., 1983) and tle least effective was grouping the cows based on the
test day milk(Williams and Oltenacu, 1992The effectiveness of the cluster methodatsgy 1)

was also proved in a static simulation study3#pierre and Thraen (1999 that study, the
authors used stati®lonte Carlo simulation to simulate populations of cows fed different NE
and CP concentrations to find the optimum allocation of &l CP. The results suggested that
the optimum allocation depended on the number of feeding groups and the herds daing just
group fed the cows to higher concentration of ldBd CP, which resulted in nutrient wastage in
manure(StPierre and Thraen, 1999Chapter 60f this thesis describes the development and
application of a dynamic, stochastic Monte Carlo simulation to estimate an economic advantage
of having multiple feeding groups insteafifeeding all the cows one TMR. Further discussion
about the potential gain in IOFC obtained by having more than one feeding group is provided in

Chapter 6
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2.5.DecisionSupport Systems (DSS)

2.5.1.Introduction to DSS

In previous sections different modeling techniques that could assist researchers to develop a
rather precise model of dairy herd systems were introduced. Results from these models under
different conditions could be helpful in understanding dairy herdesyst However, the
modeling itself would not be of any assistance to the-usmds (e.g., farmers, managers,
consultants) unless the results would affect the decision made on dairy herds under their specific
conditions. Decision making is a complex musiep process which starts by gathering
intelligence (gathered information from the system to find problems and opportunities),
continues by designing valid alternative choices, and finishes by making a choice from a pool of
alternatives(Wierzbicki and Lewandowski, 1989; Oz, 1998ecision support systems (DSS)
are the links between the underlying analytical models and the decision making process to assist

decision makers to make informed decisions.

2.5.2.DSSDefinition

Decision support systems are a subclass of computer based information systems that support
technological and managerial decision making by providing useful information regarding ill
structured or senmstructured probleméSharma et al., 2011ptructured problems are problems
in which their answers are reachable by followssgjuential sets of steps, and the answer for a
given set of parameters is always the same. Problems in mathematics and physics are usually
structured (e.g., finding a square root, speed of a falling ol§fetetir and Reynolds, 1999)lIl-

structured and sensitructured lacks these key properties.
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Plotting all infamation systems on a continuurRigure 2.10) displays on one side those
systems that just can be used as a database and for geperation(answers to structured
problems) and on the other side all expert systems that make decisions themselves and learn over
time (Sauter, 2010)On this scale DSS would be placed in the mid part of the continuum with a
goal to provide decision support for exdranging problems in the organization (generally
business) thaoften have more than one right answer (unstructured problems). It should be
noticed that the DSS main function is to support decisions made by humans (managers and

consultants) not to replace them.
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Figure 2.10. Continuum of information systems products (adapted {{®auter, 2010)

Overall, DSS can be defined as interactive computer programs that use analytical methods,
such as regression, simulation, optimization, and decision analysis algorithms, to assist decision
makers to analyze the impact of different decisions on the systéreedect appropriate option

based on the gained informati@@wass, 1997; Agrahari and Tripathi, 2012)
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2.5.3.DSSComponents

Every DSS has three fundamental components as f@daw1998; Stair and Reynolds,

1999)

1. The database (or knowledge base)
2. Themodel(based on the context and the goal)

3. The user interface (or dialog management module)

The first module is a database thdlows decision makers to conduct the gathering
intelligence phase of the decision making process. This module could either be integrated with a
database management system or it could obtain the data manually. The model module is based
on the overall goalrad design phase of the decision making process and tries to turn the data into
information for decision makers. All the models described in previous sections have the potential
to be usedn this module of a DSS. The final component is the user interfatésahe part that
provides the user the ability to change the parameters and observe the results-inendiser

environmen{Oz, 1998; Stair and Reynolds, 1999)

Although DSShave been classified based on different crite(@avass, 1997; Stair and
Reynolds, 1999; Agrahari and Tripathi, 2012he Wierzbicki and Lewandowski (1989)
classification, based on practical development of these systems in applications and research,

seems the most appropriate for dairy fargnapplications:

1. Simple toolsfor managerial decision support (these can be used as building blocks of
other main DSS). Examples of these tools are simple access databases and spreadsheet

programs.



79

2. DSSbasedon logical models and logical inferences. Thamfanction of these systems
is to help and identify logical patterns in decision situations. These systems typically
include logical programming, expert systems and toadstificial intelligence.

3. DSS based on analytical modets,lti-objectiveoptimizéion and choice. These models
try to find the best choice among alternatives. These systems include a computerized
model of the system using simulation with (or without) complettmizationmodels to

evaluate different alternatives.

2.5.4.DevelopmentProcess ofDSS

Developing a complete functional system that does everything from scratch is hardly feasible.
Adding depth to the system functionality is the ldagm objective and establishing the scope of
the system should be the priority in the DSS developmerteps(Bennett, 1983)Thus, the
system development has a circular life cycle that starts and ends with planning as it is depicted in
Figure2.11. Planning refers to identifying and selecting the system for development, assessing
project feasibility, and creating a development plan. The s&p is to analyze business
requirements and creating a flow and process diagrams of the decision problem. Design phase
works on selecting the model based on understanding the business requirements. The design
phase will follow by an implementation whichthe development of the model in the computer.
Finally, the support or feedback starts which could be used toetuire and revise the
assumptions or modeling part. Thus, system development follows an incremental, adaptive,
iterative design process whidelps the system evolve over tifBennett, 1983; Oz, 1998; Stair
and Reynolds, 1999The same development cycle can be found in management, which is called

management cyclgristensen et al., 2006)
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Figure 2.11. The system development life cycle (adapted f(Qm, 1998)

2.5.5.DSSin Dairy Herd Management

Over the years the acceptance of DSS in dairy herd systems has been on the rise and in
todayods wuncertain and risky market using such
of t he most essent i al isphe rdatabaseorhanagement gysiesn, ta a i r
fiaccuratelp r ecord al |l t HKaisteeseneen &l.s 2006However, fas itvas
discussednd illustratedKigure2.10), management information systems are reporting tools with
usually no decision support capability. To be valuable to farndeta needs to be converted to
information required in the context of a problem at hand. DSS are the means for creating
valuable information from large amounts of data that otherwise would not be that informative.
Currently, one could find a decision sw@pptool to assist them in getting information from
different aspects of dairy herd management. For exar@glerera, (2012aprovided a suite of

more than 30 DSS with a goal adsasting dairy farmers and consultants in their complex daily

decision making, available aht{p://WWW.DairyMGT.infg. Another great source, but more

limited in terms of a range of tools, for DSS is developed b¥igaa (Professor of Animal
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Health Economics, University of Pennsylvania School of Veterinavedicine;

http://dgalligan.con)/

All the modeling techniques that have been described in this thesis have the capability to
become DSS. However, except few research studies in the literature, many of the described
models stayed at the research part of modeling and did not evolve intefearsly DSS. The
following section provides some DSS descriptions that originated $memtific literature and

are apped to dairy herd management.

2.5.6.Nutrition Management and~eedingSystems

Feed cost being one of the major variable costs on dairy farms makes this group of DSS
valuable tools to dairy farmers. In addition, environmentatears regarding dairy production
systems excretion (e.g., C, N, P) into the environment and potential government policies in the
future drive decision makers to appropriate tools to better manage their dairy herd with respect to

feed the cows more precigel

There are a number of tools available for managing feeding costs that could evaluate the
IOFC for a specific lactation, feed prices, and is responsive to different feeding strategies
throughout the lactatio(Cabrera012a) The ot her example from thi:
ve. 00 for ranking the feed costs available in
feed. For the issue of environmental stewardship a whole farm simulation and optimization
model developed byCabrera et al. (2006yhich could be used to balance between the nutrient
concentration in the diet and the requirements with respect to the potential N leacteng. Th

model translated to a DSS (Dynamic Dairy Farm Model) is also availabieeorThere number


http://dgalligan.com/

82

of other tools targeted at the nutrition and risk management of feed which are also available on

line (Cabrera, 2012a)

2.5.7.Reproductive Management andCulling Decisions

In terms of DSS support and tools optimal culling, insemination decisions, and reproductive
management are major aspects of a dairy farm that have gained extra attention. This could be due
to their high impact onhte f ar moé s (varrAcehdonk,a ®8bb)Majorycomplexity and
possible interactions between different biological and managerial factors on dairy farms, and
increasing number and complexity of available reproductive programs in the rf@iietano,

2012) makes DSS welsuited for these type of unstructured problems. However, due to the
complexity involved in culhg and reproductive management the modeling has usually stayed at
the research level. Following are some of the models that evolved intfsiesdly tools for end

users.

One of the first tools available was for making optimal culling decisions basetieon
marginal net return calculation&Groenendaal et al., 2004Yhe simplicity of this model
compared to the DP model made it possiblenake a useiriendly spreadsheet model. The tool
(EconCow or OptiCow; not found online at the time of this work) was envisioned to run fast and
evaluate the cows based on their expected value. During the sam®eyedries (2004)
published a study for finding optimal replacement decisions in dairy cows using the DP model. A
Few years later (2007) the resulting tool (DairyVIP1.1) was releasedist farmers, and

currently (2015) the latest release is available (DairyVIP&ip;//dairy.ifas.ufl.edu/tool¥/ The

DairyVIP2.1 uses Microsoft Excel as the user interface, and all the complicatidre @R
model is hidden in C++ baednd codes for high performance. This is one of those tools that has

been used by other research@g/nk and Wolf, 2009; Inchaisri et al., 2011, 2012; Galvéo et al.,
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2013) Cabrera (2012b)developed a simple formulation of the sopitimal replacement
problems in dairy cows using Markov chain simulation, which was translated into an easy to use
spreadsheet program for economic evaluation of individual cowlseofatm. The tool was later
transferred online and has the capability to also evaluate the value of all the cows from an input

dairy herd fttp://dairymg.info/tools/cow_value_re$pin a recent stly the pattern and behavior

of DP optimal decisions and corresponding expected value of the cows (RPO) was successfully
learned by a machine learning algorithm to make the DP based optimal replacement decision

faster and applicable to be used online DIgf(//dairymgt.info/tools/rpo_cal¢Shahinfar et al.,

2014).

Many studies have also modeled the reproductive management of dairy(@bnals and
Wolf, 2009; Inchaisri et al., 2010; Galvao et al., 2018pwever, one of the first DSS for
assessing the economic and repraoigecperformance of different reproductive protocols was
developed byGiordano et al. (2011)This spreadsheet tool combined Marlahain simulation
model to estimate the herd structure with multiple partial budgets to calculate the net present
value of different reproductive prograrntSiordano et al., 2011b) ater the spreadsheet model
was named ReproMoney$ and was made available fouserd with an easy to use interface.
Different versions of this DSS were released until the time that another DSS using daily Markov
chain model was developed basedGinrdano et al. (2012)This latest DSS has the ability to
compare economic and reproductive performance of two reproductive protocols, giving the
decision makers a better idea about the expected performance of a given change in the

reproductive performance. More detail about this tool is coverEthapter 7
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2.5.8.0ther DSS

Over the years the original SimHerd model develope&drgnsen et al. (1998ps been the
core of overall 28 papers, and over 10 theses st@dit=ama and Jstergaard, 2015)mHerd is
a mechanistic, dynamic, and stochastic weekly simulation of dairy herds. It was evolved over the
years and different releases of this DSS had been insethny scientific paper§Sorensen,
1998) The evolution and subset of studies is summarizedaile 2.3. Currently the web
version of the SimHerd has been mad®ilable as a DSS tool for health economic analysis,
generating added value for dairy farmers in Denmark, and great opportunity for researchers in
different fields to test different hypothesis and better understanding of dairy syEttensa and

@stergaard, 2015)

The integrated farm system model (IFSM) is a walm simulation model that links the
dairy herd with all other processes on the farm such as machinery, crop pro@Rotioet al.,
2011) This model is detailed in simulating the environmental impacts of a dairy (and beef)
production system, including gas emissions, nitrate leaching, phosphorous runoff, and carbon
footprint assessment of production systems. The modellsaa used to determine production
costs, income of each year by including the seasonality in the calculations. The model has been

used mostly in wholéarm research in the scientific literatyfotz et al., 2011)

There are many other tools available online that could be used to plan ahead and make better
informed onfarm decisions to achieve a better performance. For tioed® one can review a

book chapter b abrera (2012a)n available DSSs in the dairy industry.
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3.1.ABSTRACT

The objective of this study was to determine the effect of reproductive performance on dairy
cattle herd value. Herd value was defined astther d 6s average retenti
Individual cow RPO is the expected profit from keeping the cow compared with immediate
replacement. First, a daily dynamic programming model was developed to calculate the RPO of
all cow states in a herd. Second, dydMarkov chain model was afipd to estimate the herd
demaraphics. Finally, the herd value was calculated by aggregating the RPO of all cows in the
herd. Cow states were described by 5 milk yield classes (76, 88, 100, 112, and 124% with respect
to the aerage), 9 lactations, 750 d in milk, and 282 d in pregnancy. Five different reproductive
programs were studied (RP1 to RP5). Reproductive program 1 used 100% timed artificial
insemination (TAIl; 42% conception rate for first TAl and 30% for second andskateices) and
the other programs combined TAI with estrus detection. The proportion of cows receiving
artificial insemination after estrus detection ranged from 30 to 80%, and conception rate ranged
from 25 to 35%. These 5 reproductive programs weregoated according to their 24
pregnancy rate (2d PR), which is an indication of the rate that eligible cows become pregnant
every 21 d. The 21l PR was 17% for RP1, 14% for RP2, 16% for RP3, 18% for RP4, and 20%
for RP5. Results showed a positive rglaship between 28l PR and herd value. The most
extreme herd value difference between 2 reproductive programs was $77/cow per yr for average

milk yield (RP5i RP2), $13/cow per yr for lowest milk yield (RPRRP1), and $160/cow per yr
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for highest milk yidd (RP571 RP2). Reproductive programs were ranked based on their
calculated herd value. With the exception of the best reproductive program (RP&heall
programs showed some level of ranking change according to milk yield. The most dramatic
ranking chage was observed in RP1, which moved from being the worst ranked for lowest milk
yield to the second ranked for highest milk yield. Within a reproductive program, RPO changed
based on the stage of lactation at pregnancy. Cows getting pregnant in tistaegrlgf lactation

had higher RPO compared with getting pregnant later in the lactation. However, the RPO at

calving was similar for early and late lactation pregnancies.

Key words: retention payoff, replacement decision, optimization, simulation

3.2.INTRODUC TION

Reproductive performance affects dairy herd profitab{Byitt, 1985; Meadows et al., 2005;
Olynk and Wolf, 2008) The association betweeeproductive performance and profitability is a
result of effects on milk yields, available replacement heifers, and voluntary and involuntary
culling rates(Olynk and Wolf, 2008)Some sidies that have evaluated the economic impact of
different reproductive programs using simulation mod@kynk and Wolf, 2009; Cabrera and
Giordano, 2010; Giordano et al., 2@]19 focused on the impact of reproductive programs alone.

However, replacement deci si on gvanaAresdonk,d98sbat | vy

Several biological and economic factors shob&l considered in order to make optimal
replacement decisions. The most important factors are milk production, pregnancy, stage of
lactation, and the value of a replacement heifer. Dynamic programmifg &lso known as
Markov decision procesdMPDP), is ar optimization technique that can handle all of these

factors. Dynamic programming models have been developed to optimize culling decisions in
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dairy herds over the past several decd®esith, 1973; van Arendonk, 1985b; Kristensen, 1988;
De Vries, 2004) The stage length of the DP models in thesediss varied from 1 yr to 1 mo.
However, farmers are making these decisions on a daily basis. Thus, the applicability of these

models for practical farm decision making has been lin{i&elsen et al., 2010)

Recently, Nielsen et al.(2010) used a daily stage length on DP to find theimal
replacement policy in dairy herds. They used a hierarchical MDP algorithm, developed by
Kristensen(1988) Emphasis in that study was given to building a DP model to use daily milk
yield performances based on the modern milking system in Denfhaelsen et al., 2010)
Nonetheless, thBlielsen et al(2010)study did not address the effect of differegproductive
programs on replacement decisions and retention padgBfd( the expected profit from keeping
the cow compared with immediate replacement). Hence, the need still exists to evaluate the
combined effect of reproductive performance and optireplacement decisions. A Markov
chain simulation model could be a useful technique to approximate the herd stfDet\ees,
2004)used to calculate the weighted average RPO aftemdigiag the optimal decisions for all

cow states with a DP model.

The main goal of this study was thus to assess the economic impact of reproductive
performance under optimal replacement policies. The specific objectives were (1) to develop a
daily DP moe | to compare different reproducti ve
structure found with a daily Markov chain model, and (2) to show the effect of pregnancy time

on the RPO within specific reproductive programs.
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3.3.MATERIALS AND METHODS

A value iterdion method(De Vries, 2004)was used in this study to find the optimum
replacement policies of the DP problem. After optimizing replacement decisions, a Markov chain
model was appliedot simulate the herd structure over tirfize Vries, 2004; Cabrera, 2010;
Kalantari et al., 2010)A daily Markov chain model developed Biordano et al(2012)was
used to correspond to the dimensions of a daily DP model. Finally, a herd value was calculated
by multiplying the RPO resulting from the DP model by the proportion of cows from the Markov

chain results. This herd value thimplicitly captures all optimal replacement decisions.

3.3.1.DP Model

Four state variables were included to describe cows in the DP model. Cow state was defined
by milk class (c = 1 to 5), lactation number (I = 1 to 9), DIM (d = 1 to 750), and days in
pregnancy (DIP; p = 0 to 282). Multiplying all these dimensions creates over 9 million total cow
states, but not all of these states are possible because of biological or imposed constraints.
Biological constraints indicate that DIP is always greater tBd. Imposed constraints
determine a voluntary waiting period/\(/P) and last DIM for breeding services. After
excluding impossible states, the total number of possible states in the calculations was >3
million. For each state variable, several stochastknents or transition probabilities are
included in the model, such as the probability of abortion, pregnancy, or involuntary culling, and
the probability of transition to different milk classes. All of these transition probabilities were

accordingly defied on a daily basis.

The daily DP model presented here was developed following the monthly model developed

by De Vries(2004) However, in the auent daily model, the stage variable was deleted from the
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dimensions of some of the equations. The reason for doing this was to avoid-tifienamory
exception error in the Windows platform due to the large dimension of the model with daily
stages. Withthis modification, the very large problem was built as a backward induction (value
iteration) method without affecting the results. Other modification toDbeVries (2004)
formulation was the inclusion of the transition probabilities of abortioe Vries, 2006) The
expected net presewalue NPV) of the cash flow (§4,) under an optimum policy was
Onnn 0 G QQRRAY QiRr [1]

Where Keepq,, = expectedNPV of keepingthe cow given the optimal decisions in the

remainder stages and Rgpl, = expected NPV of replacing the cow given the optimal decisions

in the remainder stages:

YQits  YOURD '0Q [2]

OO ) “C') “‘]"B 000 YO@r p UQ&L "Crpr U Q&L (3]
YOupu OO0

where SELL 4 = carcass value; kHexpected NPV of cash flow for a replacement heifer
entered at stage t; C = cost of replacement heifer; PH (c) = probability of replacement heifer with
production level c; REM 4p = net revenue for current state; Rinw probability of involuntary

~

culling at each day and U = discount factor.

The expected NPV for the keep decision depends on the state of the cow. Following are the

keep value calculations formulas:

1. If the cow was eligible for insemination (p = 0 ahdo 0 '‘Q ¢ m)7then the keep value

depended on the insemination cost (PregCost):
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VQQAr YOg@rs U1 QQ6ETI P 0Q&L ORT QQ
B 04d;Q Oy 5 p 0Q&L p 0NQ1 QB  04aapQ [4]
O r 0Q&%L YOO OO 1,

Where Ppreg= daily probability of pregnancy and Prglk = daily probability of

changing among milk classes.

2. If the cow was open in their last possible DIM (p = 0 and d = 750) or if the cow was in

the lastday in pregnancy and last possible lactation (p = 282 and | = 9):
VQQAR YOy YOURO OO 1, [5]

3. If the cow was open and not eligible for insemination (p = 0@ndw ¢ Vor ¢ Tt TT1'Q

X T)oor if the cow wapregnantg n ¢ Y)p

~

VQQRAR YOGrs, 01 Q@Y p 0Q%0 p VO WEI
G apQ [6]

B 0 & arQ Ofr p 0 Q%L 01 ¢ OB O
Oy 0 Q&0 YOO OO 1,

¢

Where Pregchk= cost of pregnancy diagnosis and ProbAoprobability of abortion.
The abortion term in equation [6] was excluded for cows with less than 30 DIP. The keep
value of entering a cow to a new lactation was calculated by adding a ¢aatamlue

to equation [6].

4. Finally, if the cow was calving (p = 282), but was not in the last lactadionu:

0 QQAF 'Y 'O ¢ p 0VQ&EU B 04 6rQ "Of fp
. [7]
0 Q&0 "YOU0 OO0 1,
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The RPO for the current stage can be calculated based on the keep and replace values

using the following equation:

YO G O QAR Y Q Rk, 8]

The RPOcan be either positive when the keep value is more than the remhcee or
negative when the replace value is higher than the keep value. The RP® uaed to rank
cows for replacement decisions in a herd. Higher RPO represents a more valuable cow and RPO

below zero means culling of the cow is preferred.

3.3.2.Markov Chain Model

A daily Markov chain modél (Giordano et al., 2012as used to simulate dairy herd
dynamics under studied reproductive performances. The Markov chain model found the herd
structure at steadstate or proportion of cows at each defined st Vries, 2004; Cabrera,
2010; Kalantari et al.,, 2010)The Markov chain model resembled all the daily DP state

dimensions, except the milk classes.

3.3.3.Herd Value Calculation

Theherda|l ue was defined as the herdds weighted

( A®AT OA Ner YO @y h 9]
Where pq,, = proportion of cows in each state at steady state fr@rMarkov chain model

and RPQ,q4,= RPO foreach state determined by the DP model. This equation calculates the

weighted average of RPO according to the proportion of available covastastate. The herd

! For simple referral a brief explanation of the model is providetpipendix 2
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value was calculated separately for each one of the 5 different milk classes and for eafch one

the defined reproductive programs.

3.3.4.Computer Implementation

The model was developed as a standalone executable program with Visual Basic.Net 2010
(Microsoft Corp., Seattle). Input variableerein the form of spreadsheet fand resultavere

gatreredas comma separated files.

3.3.5.Model Parameters

3.3.5.1.Milk Production

The incomplete gamma function(Wood, 1967 was used to estimate milk production
throughout lactation. The Levenbekarquardt &gorithm was used to minimize the difference
between milk yield observations and estimated values. Factors of 5, 10, and 15% for milk
production depression due to pregnancy were applied at 5, 6, and 7 mo in pregnancy, according

to De Vries(2004) These monthly probabilities were converted to daily probabilities.

3.3.5.2.Milk ClassTransition

The 15 milk classes as describedviap Arendonk(1985)were merged to 5 milk classes. The
fitted data were set to be an average milk class (third class) and other classes were set as a factor
to this average milk class. For example, the lowest milk class was set to 76% of the third milk
classand the highest milk class produced 124% of the third classniirendonk1985)study,
the repeatability of milk production was set to 0.55 monthly. Corresponding repeatability was

empirically found to be 0.99 on a daily basis.
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3.3.5.3.Carcass Value and Feethtake

The daily BW for each state was calculated by the Korver fun¢ionver et al., 1985as
described bywan Arendonk(1985) The model was parameterized to replicate the BW changes
throughout lactation as shown in tN&RC (2001) BW function. Body weight was also used to
calculate the daily DMI. Dry matter intake was calculated accordihRiG (2001) as a function

of BW and 4% FCM.

3.3.5.4.Involuntary Culling and Reproductive Performance

The daily probability of involuntary culling for every cow state defined in the model was

calculated based on the monthly involuntary culling describddebyries et al(2010)

A subset of 5 reproductive progranRR) from Giordano et al(2012) was studied Table
3.1). Originally, 19 differeb RP were simulated iGiordano et al(2012)to encompass plausible
ranges of reproductive performance observed in commercial dairy farms. Theyrednipa
economic and reproductive performance of a program that used 100% timeAIAKf¢r all Al
services with combined TAI plus estrus detection programs at different levels of estrus detection
(Giordano et al., 2012)n these combined programs, the probability of insemination after estrus
detection increased from 30 to 80% withd€rcentageinit intervals at 3 conception rates of 25,
30, and 35%Giordano et al., 2012 herefore, each reproductive program was represented by a
vector of daily pregnancy probabilities depending on their levels of estrus detection and
conception rates. It has been shown that when estrus detiscidded before or between TAI
services, a conceptiagate reduction of those cows inseminated to TAl is obsg®@bdbel et al.,
2004) A possible explanation of this reduction is that cows not detected in estrus and reaching

TAIl have lower fertility potentia(Keskin et al., 2011)Thus, the baseline 40% contiep rate
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after TAI at 30% estrus detection in first service was decreased by 2 percentage units for each
10% increase in the estrus detection. For second and subsequent services, the conception rate
was set at 30% when the estrus detection was between 3R0%me&nd at 28% when estrus

detection was between 60 and 8(Stordano et al., 2012)

The 5 RP studied here were selected to represent all the range of reproductive performances
observed inGiordano et al(2012) the 100% TAI program and the combined programs-at 2
percentageinit intervals of 2id pregnancy it&s (21d PR;Ferguson and Galligan, 1999 he
first program used 100% TAI for all Al services and the other programs cechfiAl with
estrus detection with different levels of service and conception ratable(3.1). The first
program (RP1) used Presyn€vsynch for theifst postpartum Al and Ovsynch for second and
subsequent Al services with a-d2vVWP and an interbreeding interval of 42 d. Combined
programs (RP2 to RP5) used the same synchronization protocol as RP1, except that Al after
estrus detection was added betwéiee end of VWP (50 d) and the first TAl at 72 DIM and in
between TAI service§Giordano et al., 2012)These 5 RP were categorized according to their
21-d PR. The 24 PR was 17% for RP1, 14% fRiP2, 16% for RP3, 18% for RP4, and 20% for

RPS.

Total daily reproductive cost for each program was calculated from the costs of labor for
estrus detection and hormone injection and the costs of hormones for synchronization of
ovulation and Al(Giordano et al., 2012)Additionally, constant costs related to pregnancy
diagnosis, assuming rectal palpation, were applied at 39, 67, and 221 DIP. Pregnant cows had a
daily probability of pregnancy loss 030 DIP to term. These probabilities varied according to

the stage of gestation. The probability of pregnancy loss was set at 0% for the first 30 DIP,
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12.5% from 30 to 45 DIP, 9.9% from 46 to 180 DIP, and 2% from 181 DIP to(@iendano et

al., 2012)

Table 3.1. Summary of studied reproductive programs

First Al (%) Second and subsequent (3b)
EDbefore CREED CR ED before CR ED CR 21d

Reproductive 1 TAI? before TAI TAI before TAI TAI pregnancy
Progrant 18 TAI rate (%)
RP1 - - 42 - - 30 17

RP2 70 25 32 70 25 28 14

RP3 50 30 36 50 30 30 16

RP4 30 35 40 30 35 30 18

RP5 80 35 30 80 35 28 20

1 A subset of reproductive programs studiedinrdano et al(2012) RP1 relied only on timed

Al (TAI) for first Al with PresynchOvsynch protocol and for second and subsequent Al services
with Ovsynch protocol, having a voluntary waiting period of 72 d an interbreeding interval

of 42 d; RP2 to RP5 combined TAIl with estrus detection between the end of the voluntary
waiting period (50 d) and the first TAl at 72 DIM and during the subsequaynahronizations.

2 Percentage of cows Al after estrus detecbefore TAI.

% Conception rate of cows Al after estrus detection before TAL.

3.3.5.5.EconomicParameters

Calves were assumed to be sold immediately, and the revenue from them was a weighted
average price for male and female calves ($100). The yearly \&@tedast for an average first
lactation cow was set to $50 and increased by $5 each lagi@tioenendaal et al., 2004)hese
veterirary costs were assigned based vam Arendonk(1985) 33% to the first month of
lactation, 11% to the second and third months in lactation, and the rest to the remainder of the

lactation. Other inputs are summarized able3.2.
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Table 3.2. Economic paramete'rs

Variable Value

Price
Milk $0.36 /kg
Calf value $100/calf
Carcass value $1.16/kg
Replacement Heifer cost $1,300
Veterinary cost $50
Feed cost (Lactation) $0.17/kg
Feed cost (Dry period) $0.13/kg

Annual Interest rate 10%

! Same values used in Giordano et al. (2012).

3.4.RESULTS AND DISCUSSION

3.4.1.Herd Value Difference BetweenReproductive Programs

The herd values for 5 RP across 5 different milk yields are presenteblia3.3. Overall,
results showed a paisie relationship between 21 PR and herd value. At average milk yield,
RP were ranked based on their herd values: RP5, RP4, RP1, RP3, and RP2 from highest to
lowest. This ranking was consistent with that found with only the daily Markov chain model
without milk classes(Giordano et al., 2012)However, Figure 3.1 reveals an interesting
interaction between milk yield and RP. Every RP except RP5 shewme@ level of rankg
change with relative milk yield. The RP5 with 20%-@PR was the absolute besbgram and
did not show any ranking interaction with relative milk yield. The situation for the other
analyzed RP was not stable across different milk yield classes. The most dramatic ranking
change was observed for RP1 (100% TAI) with 17%d2BR. This prgr amés her d v
changed from being the worst program at the lowest milk yield t@ebend best program at
highest milk yield. At the highest milk yield, RP4 (18%@PR) was ranked below RP1 (17%

21-d PR).
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The most extreme herd value difference ($/cow per yr) between 2 reproductive programs was
$77 (RP5I RP2) for average milk yield, $13 (RP5RP1) for 24% below average milk yield,

and $160 (RP5 RP2) for 24% above average milk yield.

The large effect ofelativemilk yield on herd value is shown ifable3.3. The average herd
value difference ($/cow per yr) between the lowest and the highest milk poodactoss all RP
was $1,541, and varied from $1,434 (RP2) to $1,589 (RP1). Main parameters affecting RPO in
DP models have been well studied through sensitivity analyais Arendonk and Dijkhuizen,
1985; van Arendonk, 1985b; Cardoso et al., 1999; Kalantari et al., 2010; Demeter et al., 2011)
These studies have shown, using a monthly stage length DP, that the most important factors
affecting RPO values are milk production, price of replacemeneteainhd carcass value. The

current study also found that the milk production is a very important factor determining the RPO.

Table 3.3. Herd values (US$) for 5 reproductive programs across 5 relative mitlsyiel

Relative milk yieldo average lactation curve (%)

Reproductive 214
Progran Pregnancy 76 88 100 112 124
Rate (%)

RPT 17 156 374 769 1,224 1,745
RPZ 14 159 376 729 1,129 1,593
RPZ 16 161 385 763 1,190 1,683
RP& 18 167 395 788 1,234 1,741
RP5 20 169 410 806 1,248 1,753

! RP1 relied only on TAI for first Al with PresyngBvsynch protocol and for second and
subsequent Al services with Ovsynch protobalving a voluntary waiting period of 72 d and an
interbreeding interval of 42 &RP2 to RP5 combined TAI witbstrusdetection between the end

of voluntary waiting period (50 d) and the first TAI at 72 DIM and during the subsequent re
synchronizations.
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Figure 3.1. Ranking changes of ®productive programs (RP) across 5 relative milk yields (%).
Reproductiveprogram 1 relied only on timedll (TAI) and had a 24d pregnancy rate of 17%;
RP2 to RP5 combined TAI with estrus detection ford2firegnancy rates of 14, 16, 18, and
20%, respectiely.

The difference in herd values between RP is attributed to the effect of RP on the herd
structure (percentage of milking and pregnant versus dry and open cows, and distribution of
cows between and within lactationgjgure 3.2 shows the effect of different RP on the herd
structure as well as on herd valuegjure3.2 illustrates the RPO multiplied by the proportion of
cows at each state across the first 3 lactations for 3 different RP (RP1, RP2, and RP5). Hence,
Figure3.2is the daily RPO value weighted by the proportion of cows at each state ($/cow per d).
In each lactation, the graph first shows a downward trend, which follows milk production curves.
Before parturition, milk production is the main source of a@lue, which is reflected by the

milk production curve for the average RPO values.



111

--------- RP1 ——RP5 ====-RP2

RPOT % cows($/cow per d)

0 300 600 900 1200 1500
Days after 1st calving

Figure 3.2. Product of retention payoff (RPO) by percentage of cows at each state in the first 3
lactations fo 3 reprodutive programs (RP)Reproductive program 1 relied only on timed Al
(TAI) and had a 2 pregnancy rate of 17%; RP2 and Ri®Bnbined TAI with estrus detgon

and had 14 and 20% llpregnancy rates, respectively.

After reaching the nadir, which is a resof the RPO decreasing through lactation and
proportion of cows during lactations, RPO shows an upward trend because of the expected value
of a newborn calffFollowing the first peak duringach lactation, a steegented dowward trend
continues, whichs a result of 2 factors. The first factor is parturition in a timely manner, based
on the reproductive program characteristics. For example, RP1 shows a completely discrete
pattern every 42 d, reflecting its TAI interbreeding interval. The other 2 progshavs more

continuous patterns because of estrus detection breedings occurring in between TAI

synchronizations.
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The steep downward trendkiigure3.2 is then the result of decreasing the proportion of cows
throughout DIM along with lower RPO late in lactation. It is clear that the RP with lowest 21
PR (RP2, 14%) has the greatest value in first lactation. This illustrates that RP with legver 21
PR havemore reproductive and naeproductive culling. Thus, these programs have a higher
proportion of cows in first lactation and a lower proportion of cows in second and later
lactations, which is less profitable. When comparing RP1 (100% TAl) with RP5;léas that
after the second lactation, RP1 falls behind the combined program (RP5). This can be mostly
attributed to the high percentage ofres detection (80%) with a high conception rate (35%) in
the combined programTéble 3.1). Cows inseminated after estrous detection had a shorter
interbreeding interval and greater conception rate than those cows getiehifAl (Giordanoet
al., 2012) These diferences in conception rate and estrus detection were reflected -in a 3

percentageinit difference in 24d PR (17 vs. 20%) between RP1 and RP5.

3.4.2.RPO Difference Within an RP

Figure 3.3 shows the effect of DIM and pregnancy time on the RPO. The open cow RPO
follows a milk curve pattern. The cow value is the highest at thenmieg and gradually
decreases through lactation. The unusually greater open RPO on the first day in lactation is a
result of adding the value of the newborn calf on this first day. This greater open RPO is
obscured in monthly DP modglBe Vries, 2006; Kalantari et al., 2010)he pregnant cow RPO
curve, which is equal to the difference between the RPO of pregnant aiaegmant cow at
the same DIM, changes based on tingetin pregnancy. With increasing DIM at pregnancy,
pregnancy value curves (pregnant RPO value) start closer to the RPO of open cows. The
pregnant RPO value of a cow becoming pregnant at 200 DIM for second and later lactations was

less than the RPO of opeows. For first lactation cows, this occurred at about 260 DIM (data
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not shown). However, the final RPO of a pregnant cow at parturition was similar in spite of DIM

at pregnancy (about $1,450). The lowest RPO value in the daily DP model developed in this
study was 1T%$10, which is much | essKalahmtaiet t hat
al. 2010. A much lower RPO negative value was also found by the daily DP moNetleén et

al. (2010) Daily RPO is the opportunity cost of keeping a cow for only one more day, and

therefore a negative value does not accumutateohger periods.

e Open RPO === Preg at 60 DIM = = Preg at 100 DIM
------ Preg at 150 DIM=— - Preg at 200 DIM
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Figure 3.3. Retention payoff (RPO) values for cows at different DIM of pregnancy in the second
lactation forthe average milk class andpreductive program RP5 (which combined timed Al
with estrus detection and had a@pregnancy rate of 20%).

The trends on RPO and the relative values are more important than the actual calculated
values(Groenendaal et al., 2004)herefore, panel A dfigure3.4 is presented to illustrate the
RPO trend throughout 9 lactations foffeiient DIM at pregnancy. It is clear that increasing DIM
at pregnancy from 55 to 200 d changes the shape of the curves slightly. The maximum RPO
occurred in the fourth lactation and after that, it decreased consistently until the ninth lactation,

which was the maximum possible cow life. Similar trends were previously reported in monthly
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models(Groenendaal et al., 2004; Kalantari et al., 20B®nerally, the RPO of cows decreased
after parturition until the point of pregnancy. After pregnancy, the RPO showed a large jump to
either a higher or lower value (depending on the DIM at pregndtigyre 3.4, panel A). The

times of a pregnancy in first and second lactations were obvious: a vertical upward straight line
can be seen. However, these lines were obscured after second lactation. Dlyripgegaancy,

the RPO usually showed a slight decrease in value. This decrease depended on the lactation and
DIM at which the cow was pregnant. The RPO of a cow pregnant at 55 DIM decreased slightly
in each lactation and then increased until calving. Qfierence when pregnancy occurred at

200 DIM was that the RPO increased permanently after pregnancy until the time of calving
(panel A inFigure 3.4; Figure 3.3). This difference in trend of the RPO in pregnant cows
between early and late pregnancy was mainly a result of the effect of expected miltiprod
(determined by the projected milk production curve) and involuntary culling on the net revenue.
That is, cows becoming pregnant late in lactation will have a smaller difference between keep
and replace values than cows becoming pregnant early iadiagion. This differential in value

is because of events occurring in late lactation: a decrease in natural milk production and
increase in involuntary culling, either or both of which may occur. As a result, a higher value is
placed on getting cows meant late in late lactation. This translates to a permanent increase of
RPO of pregnant cows late in lactatidghiigure 3.3; Figure3.4). Despite early or late pregnancy,

the RPO of pregnant cows increased to parturition time because of the expected value of the calf
for the next lactationHigure 3.4, panels A and B). To compare the overall value of cows
becoming pregnant at different DIM within a defined reproductive program (RP5), the
accumulated welgt e d RPO for each cow state over a

Accumulated weighted RPO value for a cow becoming pregnant at 55 DIM was $409 and for a
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cow becoming pregnant at 200 DIM was $333, a $76 difference between these 2 scenarios. This
differene was a result of RPO changes only throughout lactation because the herd structure
remained the same for these 2 scenarios. The RPO for cows becoming pregnant later in the

lactation was always lowé€De Vries, 2004)

The RPO values for the first 3 lactations for RP5, average milk class, and 120 DIM at
conception are shown in Figure 4, panel B. This shows the effect of pregnancy loss on RPO at
different DIM comparing 2 scenarios of cowaving pregnancy loss with one scenario of a cow
without a pregnancy loss: one cow has a pregnancy loss at 170 DIM (50 DIP) and is successfully
rebred 30 d later; another cow has a pregnancy loss at 220 DIM (100 DIP) and is successfully
rebred 30 d later.ie RPO of the cows losing a pregnancy decreased dramatically until the next
successful conception. This decrease in RPO depended on the DIP at which the pregnancy loss
happened. As in the previous case, the effect of pregnancy loss on the overall value was
calculated as the weighted average RPO (RPO times the proportion of cows at that specific state)
throughout 9 lactations. This value for the cow without a pregnancy loss was $370, $29 greater
than the cow with pregnancy loss at 50 DIP (and successfdd&fyr d later) and $36 greater
than the cow with pregnancy loss at 100 DIP (and successful rebred 30 d later). It is obvious that
pregnancy loss had a considerable effect on the overall RPO of cows in the herd, even though a

successful rebreeding occurrgabn after.
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Figure 3.4. Daily retention payoff (RPO) of reproductive program 5 (which combined timed Al
with estrus detection with 2d pregnancy rate of 20%) and average milk class under different
scenams. (A) Pregnancy at 55 DIMY(), pregnancy at 200 DIM-{--) during 9 lactations; (B)
pregnancy at 120 DIM without pregnancy |o8s)( pregnancy at 120 DIM with pregnancy loss

at 170 DIM and successfully rebred ath 200
pregnancy loss at 220 DIM and successfully rebred at 250 BAM-{ during each of the first 3
lactations. Labels show events: pregnancy (P), pregnancy loss (L), successfully rebred (R), and
calving (C).

3.4.3.Implication for Dairy Farm Decision-Making and Management

Our results support theotion that an opportunity exists to adjust reproductive programs
according to milk classes and therefore according to RPO. The modeling framework could be

used for daily decisions of assigning cows to different dyctve management groups based
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on their RPO. This would promote more ceffective reproductive programs and therefore
overall improved herd value. In addition, results demonstrate an interaction among herd value,
relative milk yield, and reproductive ggrams at different levels of estrus detection and TAI.
Therefore, daily reproductive decisions might include, for example, whether to breed a heat
detected cow or not. Cows with higher relative milk yield would benefit more from TAI
reproductive programsyhereas cows with lower relative milk yield would be better off with

edrus detection program§&igure3.1).

Replacement decisions are being made dailglairy farms and these decisions have a great
effect on the herd profitability. Despite their great impact on profitability, these decisions are still
made arbitrarily. The most important aspect of the DP model is its ability to rank cows in the
herd baed on their value. This ranking could be an important guideline to replace the least
profitable animals in the herd. Dairy farmers, extension professionals, and farm advisers could
take advantage of this information to help decisimaking and managemenh alairy farms.

Indeed, the models presented here could be incorporated into software already being used on
dairy far ms. The <current DP model 6s daily st
accurate RPO and to be used as a guideline in these adadialdecisions. Moreover, the

ranking could be used in conjunction with reproductive decisions, such as distinguishing the
guality and type of semen according to daily RPO ranking. A possible refinement bPthe

model could include the decision whethemot to breed eligible cows on a daily basis. The DP

model could be modified to address a greater range of dairy farms such as organic or grazing
farms. For example, those farms having a goal to promote the longevity of milk cows could use
suboptimal deaions: this could be addressed by multiplying the keep value in the objective

function (Eg. [1]) bya constant fac o r (0) . OQur def aulUt vfad mrau lodt i
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Farms willing to keep cows for longer than their economically optimal lifetime wosgdan
empirical valuation of this factor >1. On the opposite end of the spectrum, farms wanting a faster
turnover of animals because of potential herd genetic gain would have this value be <1. The
decisions with this modification could be, to some extenbjective, but could accommodat

particular farm objectives.

An important advantage of using daily stage in the models presented in this study is the ability
to better represent farspecific and detailed reproductive management strategies. For example
the models could be adjusted to farms that use natural service by modifying the probability of
pregnancy calculations. Because the actual time of insemination is not known, stochastic
distribution could be used to simulate possible observed patternefdree distributions could
be appliedto simulate the unknown serviceémes. Currently, a similar methodology is
implemented to simulate the distribution of cows showing estrus. Although DP optimal decisions
are not sensitive to the probability of pregoyatvan Arendonk and Dijkhuizen, 1985he daily
Markov chain model is highly dependent on these probabilities. Additionally, theMaikov
chain model could be used to analyze the cost effectiveness of different pregnancy diagnosis

techniques and their interaction with reproductive programs.

Another application of the DP model could be in veterinary treatment dec{§enseter et
al., 2011) Positive RPO represents the expected value of keeping a cow one more day, and
negative RPO is the opportunity cost of keeping this cow one more day. A positive RPO could
be interpreted as the maximum acedyi¢ treatment cost that could be spent in treating a cow
(van Arenank, 1988) On the other hand, a negative RPO shows the amount of money the farm
is losing by keeping the cow one more day. Indeed, the daily DP model could be used by

researchers to estimate more accurately the costs of days open, new pregnancyrvtiaes,
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value of pregnancy losses. Ultimately, both models (daily DP and daily Markov chain) could be

integrated with existing models to perform whitdem studies.

As with any simulation and optimization model, the current models have some limitations.
The models presented here do not include health problems, such as mastitis and lameness, or
seasonality, which have been shown to have considerable effect on optimal decisions, herd
structure, and herd net retu(douben et al., 1994; De Vries, 2004; Cha et al., 20TAgse
limitations could be overcome bydiluding more state variables. However, inclusion of new
states makes the state space of the models grow exponentially. Large DP models could become
unsolvable. Hence, a tradeoff exists between including more state variables and decreasing stage

length.

3.5.CONCLUSIONS

A daily DP model was developed to evaluate the effect of different reproductive programs on
herd value when coupled with a daily Markov chain model. Results showed that herd values
were largely influenced by reproductive programs. In additionjngaraction was observed
among the herd value, milk yields, and reproductive programs. Results support the notion that
reproductive programs or specific reproductive events could be designed according to the
individual cow expected productidevel for improved herd value. Within the same reproductive
program, the RPO changed based on the stage of lactation at pregnancy. Cows becoming

pregnant early in lactation had greater RPO than cows becoming pregnant later in lactation.
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A comparison analysis of two alternative dairycattle replacement strategies:

Optimization versus Simulation models.
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4.1. ABSTRACT

The objective of this study was to compare tpimal replacement decisions using two
alternative statef-the-art models: the optimization dynamic programming model and the
Markov chain simulation model. Lactation, month in milk and pregnancy status were used to
describe cow states in a herd in batbdels. Both models were fed with the same parameters
and transition probabilities to make the fairest comparison possible. The cow value calculated by
the Markov chain model was compared against the retenticofpagtimated by the dynamic
programming rodel. These values were used to rank all the animals in the herd. Then, the rank
correlation (Spearmandés correlation) was <calc
correlation was 95%, which showed a strong linear relationship between raokiagsnals
from the two models. Moreover, the lowest 10% ranking cemisich are the most likely
replacement candidateslisplayed a greater correlation, 98%. Thus, the final replacement
decisions with both models were similar. A post optimality analysis used to explore the
effect of the optimal replacement decisions on the herd dynamics and herd net return. The results
showed a comparable herd structure by both models. A net return was improved $6/cow per year
by using replacement decisions of botmamwic programming model and the Markov chain cow

value model.

Key words: herd economics, optimization, replacement policy, simulation
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4.2.INTRODUCTION

The ability of farmers to make right decisions at the right times significantly determines the
success of any enterprise. This success can be stated as maximizing profit. It has been shown that
total profit is highly affected by replacement decisi¢van Arendonk, 1984and reproductive
performance(Britt, 1985) Reproductive performance attained special attention in research
literature(Olynk and Wolf, 2009; Cabrera and Giordano, 2010; Giordano et al., 2011b,&012)

a result of its prominent economic impact on the profitability of dairy farms.

Over the past decades several studies have analyzesptihmum replacement interval in
dairy herds and factors that affect these decisi®mith, 1973; van Arendonk, 1985b;
Kristensen, 1988; De Vries, 2004; Groenendaal et al., 2004; Demeter et al., 2011; Cabrera,
2012b) Simultaneous accounting of several biological and economic parameters is necessary to
determine the optimum time of replacing a cow. Milk production level, pregnancy, stage of
lactation, parity and transition probabilities such as involuntary cullingnarey, and abortion
are considered the most important factors affecting replacement dedKialasitari et al.,
2010) Approaches that have been proposed to handle these factors and find the optimum
replacement strategy including marginal net re2e(MNR) (van Arendonk, 1984; Groenendaal
et al., 2004) dynamic programmindP) (Smith, 1973; van Arendonk, 1985b; De Vries, 2004)
and stochastic simulation model@arsh et al., 1987; Dijkhuizen and Stelwagen, 1988;
Kristensen and Thyse 1991) The first two methods are based on the production function
approach in which the cowds revenu@oeaenddal cost s
et al., 2004) The limitation of MNR is its inability to include the variation in expected milk
production of the present cow and subsequent replacement heifers, agenétie gain of

replacement heifer¢Groenendaal et al., 2004The DP technique overcomes both of these
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limitations. However, because its complexity, the usage of DP models has beeredesirict
research analysis and not for building decision support systems for practical de@&iog and

farm management. The Monte Carlo stochastic simulation approach has been used to calculate
the total expected net returns during next year and thaé wafis used for ranking animals.
Kristensen and Thsen (1991 compared the decisions being made by DP and stochastic

simulaton and reported insignificant difference between the two models.

Recently, Cabrera(2012) used a Markov chain simulation model to find a suboptimal
replacement policy. In brief, this method cd#tas the net present value for a cow and its
potential replacement, which could be used to decide whether to keep or replace a dairy cow.
This method does not have the complexity of DP models and overcomes the limitation of MNR
method because it can indii expected variations in the cow and replacement performances. He
reported that trend and replacement strategies found with the newly Markov chain model would
be similar to those found with DP models. However, such study did not include a formal
comparise with a DP model. Consequently, the objectives of this study are to compare the
replacement decision strategies reached with a DP and a Markov chain model; and to compare

the effect of optimal replacement strategy on the herd structure and net revenue.

4.3.MATERIALS AND METHODS

In this study we compare the outcomes of two alternative models currently used in the
literature to offer dairy cattle replacement policies. The DP model was adapteldfantari et
al. (2010)and the Markov chain model fro@abrera(2012) Both models were set to follow

similar specifications and parameters.
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4.3.1.Modeling Specifications

Three state variables were dge describe cows in both models. Cow states were defined by
lactationnumber (I = 1 to 10), month in milk (m = 1 to 20), and month in pregnancy (p =0 to 9;
0 for open cow and 1 to 9 for pregnant). After discounting impossible states, each model had
1,00 possible states. There were also a number of common stochastic elements for transition
probabilities such as the probability of abortion, pregnancy, and involuntary culling. These
transition probabilities were used to define the flow process of cowsgastates from one
month to another. For example, an open cow could become pregnant in the current month or be
involuntaryculled (retired because the cow can no longer produce) innmaxth according to

these probabilitie@Cabrera, 2012b

Although both models rely on Markov chains as their underline structure, they have different
control mechanisms. The transition probability matrix is the only governing rule that changes
states from one stage to another in a Markov chain model. et&wthere is an extra step at
each stage on the DP model, which is to select the optimal action in the current stage for the
specified state variables. In other words, the addition of a system control mechanism, which can

be defined with the term Markalecision process instead of Markov ch@osavi, 2003)

4.3.2.Dynamic Programming Model

The DP model used the oO6divi de -atagdprablemigtas e r 6
a series of independesinglestage problems. The objective function was to maximize the net
present value of revenué®m the current cow and its potentraplacementgKalantari et al.,

2010) The objective function can be shown in terms of mathematical notiati@sd:

Gn Voo QQRAYQn [1]



129

Where Keepn p=expected net present val(léPV) of keepingthe cow in lactation I, month
in milk m, and pregnancy p, gimghe optimal decisions in the remainder stages and Repl
expected net present value of replacing the cow given the optimal decisions in the remainder
stages. The detailed formulation of calculating the keep and replace values for different states
can be found ir{fKalantari et al., 2010)Retention payff (RPO), which is the expected profit
from keeping the cow compared with immediate replacer{i@atVries, 2004)was calculated
using the follomng equation:

YOgr 0QQR YQhg, [2]

The RPO represents the value of a giwew (represented biym,p. The RPO can take
positive, zero, or negative values. A positive RPO determines that keeping the cow for another
month has a higher net return than replacingvhereas negative RPO means that immediate
replacement has a higher net return than keeping the cow. The RPO can be used to rank all cows

in the herd to find out the cows that are most likely replacement candidates.

4.3.3.Markov Chain Cow Value Model

A Markov chain model with monthly stage was developed to predict the herd structure at each
stage following(Cabrera, 2012b)The NPV of the cow and its replacement is calculated at each
stage unti|l t he modeteadyst®ted c hE8tcedathy sbhatddéeti snac
proportion of cows in all states remain constant in two subsequent stages. Steady state in the
model defined here always occurred befitegation number150" (which is the same as 150
months in the future). Fornas for calculating the proportion of cows at each stage are described

in detail in(Cabrera, 2012b)
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The NPV of the cow and its replacement were calculated by adding all economic values at
each stage from the start of simulation uatiime when the model was at steady state. Economic
values at each stage were calculated as the sum product of the net revenue of each state and the
corresponding herd structure. The formula, following notationCatrera(2012) for this

calculation follows:

00w ! DQ006QIYOW® YOOYD,r, O60wpp O

Where! is interest rate, Mi milk income, Fc feed cost, Ci calf income, NRCc non
reproductive culling cost, Mc Mortality cost, RCc reproductive culling cost, Rc reproductive
cost and COW the proportion of cowberd structureat each stage (i) for given state variable
(represented blym,p). After finding theNPV for both the cow and iteplacementhe cow value

was estimated by using the following equation:

Cow Value = NPV Cow NPV Replacemeriit(Replacement CostSalvage Valué Calf Value)

[4]

This cow value could then be used for deciding whether tp &eeeplace a cow based upon
the sign of the value. Positive cow value (like positive RPO) means that the cow would bring
more net revenue than its replacement and therefore the best decision would be to keep the cow.

A negative cow value means that rey@aent is more profitable than keeping it.
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4.3.4.Shared Models Parameters
4.3.4.1.Milk Production

The MilkBot function (Ehrlich, 2011)was used tdit milk production curves for the first,
second and third and later lactations. The MilkBot predicts gdlds, Y(m), as a function of
time after parturition or months in milk, m. oparameters, a (scale), b (ramp), c (offset), and d

(decay), control the shape of the lactation cuf&slich, 2011)

Using this function the 305 day estimated milk production (kg) were approximately 10000,

11,000 and 12,000 for the first&tations, respectively
4.3.4.2.Live Body Weight

Average monthly live weight for each state was calculated using Korver furigioner et
al., 1985)as described byvan Arendonk, 1984)Body weights were used to calculate the

carcass value of the replaced cow and to estimate dry matter intake for each cow state.
4.3.4.3.Dry Matter Intake

Daily dry matter intake was calculated using Spartgiv@ndehaar et al., 1992quation;
which is a function of maintenance and mgkoduction according to month in milk, m. This

function used body weight and 4% fat corrected milk yield as inputs.
rds 8 & 8 Py pi [6]

Where BW is the live body weight and 4%FG8M% fat corrected milk.
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4.3.4.4.Calf Value

It was assumed that all 1 weekd calves are sold and the value was assumed to be the

weighted average of the value for male and female c@leadows et al., 2005)

4.3.4.5.Involuntary Culling

Cows at every state had the risk of being involuntary culled. The risk of involuntary culling
was increased by lactah and MIM. Data fronDe Vries et al(2010)was used to incorporate

these transition pbabilities.

4.3.4.6.Reproduction

Voluntary waitingperiod of 60 days (time when cows are eligible for insemination)aand
18% 2kday pregnancy rate were assumed. Cows were not bred anymore after 10aMIa/,

cutoff time). Pregnancy losses were includetiowing (De Vries, 2006)

4.3.4.7 Economic Parameters

Replacement heifer cost was setU&$l,300/cow. Feed price for lactating and dry cows were
set atUS$.22/kg andJS$0.18/kg, respectivelyCabrera, 2012b)Other economic variables are

summarized imable 41.

4.3.5.Computer Implementation

The DP model as originally developed Kglantari et al(2010)was used to find the optimal
replacement decisions. The Markov chain cow value model describ@abyera, 2012byas
re-codedas a standalone executable program with Visual Bésic 2010 (Microsoft Corp.,

Redmond, WA.
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Table 41. Economic variablegUS$) used for both models: dynamic programming (DP) and
Markov chain (MC)

Economic vaables Value
Replacement cos$/cow 1,300
Carcaswvalue,$/kg 0.38
Calf value $/calf 100
Milk price, $/kg 0.35
Feed price for lactating cow/kg 0.22
Feed price for dry cow§ykg 0.18
Interest rate, Y%Ba 6

4.3.6.Model Comparison

The mostimportant result of these two models was the ranking of all the animals in the herd

according to their expected cow value or RPO. Therefore,vabwe (calculated from Markov

chain model) and RPO (from DP model) were used to rank animals andrcenpeéb ot h  mo d e |

resultsThe Spear mandés r ank toccompare darkihgs foom bdthensodlels.w a s
The fAspear niBaniaky, 2009inkRas@tistical softwaréR Development Core Team,

2011)was used to perform this statistical test.

4.3.7.PostOptimality Analysis

After finding the optimal decisionwith a DP model, Markov chain models are used to find
the herd demographics (herd structure) and economic parameters under optimal d@¢iséens
different scenarios were desgined to compare the effect of optimal decisions on the overall herd
dynamics ad herd net returnThe first scenario used the Markov chain model as described in
Cabrera2012) The second scenario ran the Markov chain model under optimal dedsimrms
by the DP mode(De Vries, 2004; Kalantari et al., 201@&nd the third scenario used sstep
solution procedure of the Markov chain model. Negative values in the first solution were

considered replacement decisions that were apatieaptimal decisions for the second solution.

(
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4.3.8.Sensitivity Analysis

Sensitivity analysis was later used to assess the effect of change of the main parameters on the
accordance of the two models results. The most important factors affecting the cullsigndeci
have been well studied and include milk production levelrapthcement cogivan Arendonk,
1985b; van Arendonk and Dijkhuizen, 1985; Kalantari et al., 200igrefore, the effect of 20%

change in milk production el and 20% change in heifer purchase price were studied.

4.4, RESULTS and DISCUSSION

We first compare the similarities between the alternative methods used in this study. The cow
value ranking accrued by solving both models had a strong linear relationski@ Spna n 0 s
correlation (rho) between rankings of the 1,000 possible states was 89% (df=@88e <
0.0001). This correlation factor was affected by methodological differences between models,
mostly regarding to the last lactation. In DP model, cows iir thst lactation and late MIM
were considered to be at their end of productive life and therefore replaced regardless of their
pregnancy statusihe keep value for these cowss calculated with a different equation than
other cow states.e., Equation(5) in Kalantari and Cabrera (201 2yhich forcesreplacemenof
these cow. In fact, this forced replacemeinf DP formulationaffects sequentially all lactations
but has the highest impact in the last lactatlmetause each value is dependent on the optimal
decision of the next cow staite the previous stagéiowever, in Markov chain model the value
of the cow was calculated the same way regardless of lactation, and there was no distinction
between cow value tmulations of different lactation®Jnder those circumstancdast lactation
wasexcluded for furtheanalysesAf t er t hi s exclusion, Spear mano
(df=898, pvalue < 0.0001). Theveighted average cow valueestimated by Markowhain

model and weighted by proportion of cows in different statasresponded to this ranking was
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$554 and in DP model the average RPO $#&42. In both models the best ranked cow (highest
positive value) was a fresh cow in third lactatitharkov chan with US$872 and DP witt$917.

Also, the least valuable cow was shared by both models as a cdWadnt&tion, last month in

milk, and norpregnant. DIMno d el 6 s RP O f-&44 and bow salue in Markawvecisain
was - $355. This negative RPO or cowalue means that replacing a cow with a replacement
heifer would be more profitable than keeping the cow one more month in the herd. The big
difference in the magnitude of the values is due to the fact that DP follows optimal pathway and
would not accumuite negative valuesdowever there is no optimal strategy in the Markov

chain model.

A scatter diagram of the ranking of cow values in both models for 900 states over 9 lactations
is shown inFigure4.1 Rankings are closer at the beginning and at the end of the diabham
diagram shows a bifurcation in the rankings and it is obvious that the rank for some cows does
not follow the samepattern in both models. The upper groups of points in the diagram
correspond to open cows in early lactation. However, these cows are far for being candidates for

replacement.

The most important part éfigure4.1, for practical decisiormaking and management, is the
end tail of the graph (right top corner) that represents the lowest ranking cow states. These cow
states with the lowest ltees are the most likely candidates for replacement decisions. The
agreement (Spear manos correlation) bet ween
represented by 10% of all cow states in the mod®. percentage of negativalues inthe two
models washot the samei.e., 10% of all states in the DP model (corresponding to open cows
>12 MIM in the first lactation and >@ MIM in other lactations)and 12% of all states itne

Markov chain model (corresponding to open cow)>MIM in the first lactation,> 9 MIM in
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the second lactation, an® MIM in later lactations) Since voluntary replacement decisions will
not exceed 4% of the herd in one mo(fktrow et al 2006) this result indicates thdtnal and

practicalreplacement decisiorae almost identicalith both models.

900 +
800 -
700 -
600 -
500 -
400 -

300 -

Markov chain Ranking

200 -

100 -

0O 100 200 300 400 500 600 700 800 900
Dynamic Programming Ranking

Figure 4.1. Relationship between ranking (higher to lowom dynamic programming model
(DP) retenton pay off (RPO) and Markov chain model (MC) cow valwer nine lactations (900
cow states)

Table4.2 shows the breakdown of the overall correlation by pregnancy status, parity number

and stage of lactatioisenerally, all the correlation factors are greater than, 99%¢eh indicates

strong psitive relationships between mod®lssults.lt should also be mentioned that different
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pregnancy status showed strong Spear mandés cor

had a high agreeent based on pregnancy status.

Table42. Spear mands correlation (rho) bet ween dyn
pay off (RPO) and Markov chain model (MC) cow value broken down by pregnancy status,
parity and stage of lactation with number of pair observations from modelsdagh state.

States rho States rho

Open (n=171) 0.995 3 Parity (n=100) 0.968
1°'MIP* (n=81) 0.970 4" Parity (n=100) 0.964
2" MIP (n=81) 0.976 5" Parity (n=100) 0.957
3 MIP (n=81) 0.982 6" Parity (n=100) 0.954
4" MIP (n=81) 0.989 7" Parity (n=100) 0.955
5" MIP (n=81) 0.994 8" Parity (n=100) 0.957
6" MIP (n=81) 0.992 9" Parity (n=100) 0.951
7" MIP (n=81) 0.966 Early lactation (MIM=1,2) (n=18) 0.742
8" MIP (n=81) 0.881 Mid lactation (MIM=3-8) (n=243) 0.838
9" MIP (n=81) 0.916 Late lactation (MIM=914) (n=459) 0.978
1% Parity (n=100) 0.964 Very late lactation (MIM=1519) (n=180) 0.995

2" Parity (n=100) 0.973

IMIP=month in pregnancyMIM= Month in milk, n=number of observation with the specified
state

4.4.1.PostOptimality Analysis

Post optimality analyses are summarized able 43. The first scenario that used a Markov
chain without any optimal decisions refem a net retun of $1,584/cow per year. The net return
under optimal decisions from DP was $6/cow per year higher than the Markov chain without
optimal decisions. As expected, this difference was mostly originated from reduced culling costs.
Therefore, chnging replacement policies according to DP results would equate in extra

US$6/cow per year.

The net return resulting from Markov chain with suboptimal decisiorstef2 solution
scenari o) was equal to the one uegeiwem slighhe DPO6

differences in specific economic components. Main differences between these two scenarios
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occurred in milk income and culling costs. Culling cost in the Markov chain model was mainly
affected by applying the cuiff at 10 MIM and also havin 2% more non reprodutive culling
than the DP optimal decisionalthough the cubff MIM applied equally inboth models, this
cutoff in the Markov chain model indicatedplacenentfor these cowgreproductive culling).
However, in DP modetut-off MIM only meanta different calcuation ahe keep vale, which

did not include reproductive service cogtsalantari and Cabrera, 201Another source of net
return difference between thesgep Markov chain and the DP modaeds higher milk sales in

the Markov chain model. This difference was also related to thefcIM. Cows were culled

at 10 MIM in Markov chain model, which resulted in a slightly different herd structure (more

early lactation cows) that yielded incredgotal milk revenu&able 43.

Table 43. Economic parameters and herd structure resulting of Markov chain model simailatio
under different scenarios

Economic Parameters (US®w per yj Herd structure
Scenario  Net Milk Feed Calf Cull Rep Lact Lact2 Lact3 Lact DIM Preg. Lact
return sales cost sales cost cost 1%) (%) (%) 4(%) (d) (%) (%)
McC* 1,584 3,266 -1,402 63 -274  -69 3438 254 16.69 23.2 138 60.8 81.22
MC+DP* 1,590 3,263 -1,401 63 -265  -69 3484 2526 1659 23.04 141 60.53 81.48
1,590 3,279 -1,400 63 -280 -71 36.28 26.27 16.46 20.99 135 60.6 81.23

MC+S
TMarkov chain simulation without optimakcisions

2Markov chain simulation with optimal decision obtained from DP
3Markov chain simulation with suboptimal decisions obtained from Markov chain

Herd structure and dynamics at steady state of the 3 scenarios studied are also summarized in
Table 43. The Markov chain and DP model 6s over al
different. However, results from the Markov chain under suboptimal decisiesteg{Zolution)
showed discrepencies with results of both the original Markov chain and the B&. mbe

most important difference was a 1.44% change in the proportion of cows in the first parity in
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favor of the Markov chain with suboptimal decisisiofitis difference could be attributed to

higher culling rates (mainly reproductive culling)tims scenario

4.4.2.Sensitivity Analysis

Twenty percent changes in the milk production and heifer price did not affect the overall
correlation factor of two models, remaining greater than 90% in every scenario. The effect of
these changes on cow value is illustdateFigure 42. Because the optimal pathway is followed
in DP model through iterations, nmuch negative values are accumulated andnthemum
observed wasuS$44. The dispersion of cow values in the Markov chadehwas higher than

in the DP Figure 42).

Figure 4.2. The cow value (US$) from dynamic programming model (DP) and Markov chain
model (MC) for a 20% change (from baseline scenario) in heifer price and milk production















































































































































































































































































































































































































