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ABSTRACT 

Dairy farm is a complex business enterprise with several uncertain and interacting factors 

(e.g., biology, environment, market conditions). To become and remain viable in such 

environment, dairy farm decision makers need to make better-informed decisions. Appreciation 

of these facts has resulted in extensive on-farm data gathering. However, to obtain useful 

information for decision-making, data need to be processed. For this purpose, mathematical 

modeling techniques can be used to develop decision support systems. This thesis applies 

different mathematical modeling methods- dynamic programming, Markov chain, and Monte 

Carlo- to evaluate and quantify the economic impact of optimal replacement decisions, 

reproductive management, and nutritional grouping on dairy herdôs profitability. Some of these 

models were also transformed into decision support systems that can further assist decision-

making at the farm level. Dynamic programming optimization and Markov chain simulation 

were compared to find the optimal replacement decisions in dairy cows. The results showed that 

although dynamic programming remains the best algorithm for replacement decisions, the 

simulation method had comparable results. The effect of reproductive management on the herd 

value was quantified by integrating daily dynamic programming and Markov chain models. The 

results showed that there is an economic opportunity to differentiate reproductive management 

strategies according to cowsô relative milk productivity. Also, a robust Markov chain was 

introduced and used for stochastic evaluation of reproductive performance. The study confirmed 

greater profitability with increased reproductive performance, but a great variation among farms 

at a given level of reproductive performance was also observed. Finally, a dynamic, finite, 

stochastic Monte Carlo simulation was developed and used to evaluate the economic impact of 

nutritional grouping of lactating cows. The results indicated that there was an economic 

opportunity when grouping homogeneous cows based on both their protein and energy 

concentration requirements. Regardless of herd size, a maximum relative gain could be achieved 

by having three nutritional groups beyond the fresh cow group. 



ii 
 

ACKNOWLEDGEMENTS  

During my Ph.D. program at the University of Wisconsin-Madison, I was faced with many 

challenges and without the support, patience, and guidance of the following people my studies 

would not have been completed. 

First and foremost, I would like to offer my sincerest gratitude to my advisor, Dr. Victor E. 

Cabrera, who has supported me, with his patience and knowledge whilst allowing me the room 

to work in my own way. His patience allowed me to catch up with my English. His modeling 

knowledge and ideas were always invaluable to my research. By providing a friendly 

environment for me he was always more than an advisor to me. One simply could not wish for a 

better or friendlier advisor. 

I would like to express my very great appreciation to Dr. Louis Armentano for his 

constructive suggestions and his contribution in modeling nutritional grouping. His knowledge 

and invaluable insights were indispensable to my dissertation. I also appreciate his patience for 

taking the time to explain to me related dairy nutrition topics.  

I would like to thank Dr. Kent Weigel for his contribution to this dissertation through a 

collaboration that was done with his student, Saleh Shahinfar. Even though I didnôt have the 

chance to model any genetics in my projects, having his support was great.  

I would also like to thank Dr. Paul Fricke for his contribution and feedback to this work. His 

reproductive knowledge was essential for the reproductive modeling part of this thesis. 

I wish to acknowledge the lessons learned from Dr. Thomas Cox from the school of 

agricultural and applied economics. I took a course named ñQuantitative Methods in Agricultural 

https://www.aae.wisc.edu/aae426


iii 
 

and Applied Economicsò with him, which changed my perspective on the purpose of learning. I 

never forget his motto, ñlearning to learnò and ñthinking to think.ò His economic point of view 

was also essential in many of the analyses performed in this thesis. 

I really appreciate all of my committee members for taking their time and preparing insightful 

written questions for my preliminary exam. That exam broadened my view and allowed me to 

learn a lot about my strengths and weaknesses.  

Next, I would like to thank my friend and colleague Dr. Julio Giordano from Cornell 

University, whose inputs on reproductive management programs were essential in developing the 

UWCURepro$ tool.  

Appreciation also goes to Dr. Randy Shaver who provided great advice for the section of 

modeling nutritional grouping.  

I would like to thank Dr. Bruno Valente for making it easy for me to run my analyses on 

breeder 6. 

I would also like to thank the staff of the Dairy and animal science department. During my 

Ph.D. program: Cathy Rook, Nancy Hilmanowski, Minh Ngo and Steve Swintzer were always 

available for giving guidance and assistance in the paperwork and technical problems.  

Next, I would like to name all those people that I got the chance to know during my program. 

I would like to especially thank two of my old friends from University of Tehran Dr. Saleh 

Sahanifar and Dr. Yalda Zare, which in a mere chance we ended up reuniting after our 

graduation from Master program. I appreciate their assistance upon my arrival in Madison, and 

the guidance they gave me during my coursework and for my projects. I also like to thank my 

https://www.aae.wisc.edu/aae426


iv 
 

hosting American family Dr. John Murphy and her late wife Elaine. Her memory will be with me 

always. 

Being from a small lab, I did not have the chance to work with many people with similar 

interests as mine, but finally in 2013 Di Liang joined the lab and we had great discussions about 

our models. I appreciate her friendship. 

I thank all other friends from the fourth floor. Room 442, where I was hidden in the last cubic, 

was the hub of all the hard working people and I had the chance to get to know many people 

from around the world.     

It is easy to forget the role that Madison and especially Memorial Union, mostly in the 

summer, plays in the morale and health of graduate students. Thanks for the view, drink, and 

good friends that make you forget about your problems even for an hour or two.  

Last but not the least, I would like to thank my parents for trusting and encouraging me to 

pursue whatever is that I like to do. They have always been the source of encouragement in my 

life. I also like to thank my brother, Farzin Samia Kalantari, for tutoring me in Math while in 

high school when I did not appreciate the power of math and modeling.  In my wildest dreams, I 

would have never thought ending up doing a thesis using ñMathematical modeling.ò  

Thanks to all! 

Afshin Samia Kalantari  

May, 2015 

 

 



v 
 

Table of Contents 

CHAPTER 1 ....................................................................................................................................................... 1 

INTRODUCTION ........................................................................................................................................................ 1 

1.1. BACKGROUND................................................................................................................................................... 2 

1.2. THESIS OUTLINE ................................................................................................................................................ 4 

CHAPTER 2 ....................................................................................................................................................... 6 

LITERATURE REVIEW ................................................................................................................................................. 6 

 SYSTEM MODELING ........................................................................................................................................... 7 2.1.

 System Theory and Definition ............................................................................................................... 7 2.1.1.

 System Components ............................................................................................................................. 7 2.1.2.

 Why Modeling? .................................................................................................................................... 8 2.1.3.

 Modeling Terms .................................................................................................................................... 9 2.1.4.

 Mathematical Models Classifications ................................................................................................. 10 2.1.5.

 Mathematical Programming vs. Simulation ....................................................................................... 10 2.1.6.

 Simulation ........................................................................................................................................... 11 2.1.7.

 Advantages and Disadvantages of Modeling ..................................................................................... 14 2.1.8.

 Simulation Study Steps ....................................................................................................................... 15 2.1.9.

 MARKOV CHAIN SIMULATION MODEL ................................................................................................................. 19 2.2.

 Markov Chain Models in the Dairy Herd Industry............................................................................... 23 2.2.1.

 Summary of Managerial Changes ...................................................................................................... 28 2.2.2.

 Sub-Optimal Replacement Decisions .................................................................................................. 29 2.2.3.

 Introduction to Robust Markov Chain ................................................................................................ 30 2.2.4.

 DYNAMIC PROGRAMMING ................................................................................................................................ 32 2.3.

 Dynamic Programming Terms and Concepts ..................................................................................... 32 2.3.1.

 Dynamic Decision Model .................................................................................................................... 33 2.3.2.

 Finding Optimal Solutions ................................................................................................................... 35 2.3.3.



vi 
 

 Value Iteration Method ...................................................................................................................... 36 2.3.4.

 Optimizing Techniques Comparisons .................................................................................................. 37 2.3.5.

 Dynamic Programming Model in Optimal Dairy Cow Replacement ................................................... 39 2.3.6.

 Retention Payoff ................................................................................................................................. 44 2.3.7.

 A Simple Dairy Cow Replacement Demonstration .............................................................................. 45 2.3.8.

 MONTE CARLO SIMULATION ............................................................................................................................. 49 2.4.

 Monte Carlo Simulation Steps ............................................................................................................ 50 2.4.1.

 Variance Reduction Methods ............................................................................................................. 55 2.4.2.

 A Simple Monte Carlo Example in Dairy Cows .................................................................................... 57 2.4.3.

 Monte Carlo Simulation in Dairy Herd Industry .................................................................................. 60 2.4.4.

 DECISION SUPPORT SYSTEMS (DSS) .................................................................................................................... 76 2.5.

 Introduction to DSS ............................................................................................................................. 76 2.5.1.

 DSS Definition ..................................................................................................................................... 76 2.5.2.

 DSS Components ................................................................................................................................. 78 2.5.3.

 Development Process of DSS .............................................................................................................. 79 2.5.4.

 DSS in Dairy Herd Management ......................................................................................................... 80 2.5.5.

 Nutrition Management and Feeding Systems .................................................................................... 81 2.5.6.

 Reproductive Management and Culling Decisions ............................................................................. 82 2.5.7.

 Other DSS ............................................................................................................................................ 84 2.5.8.

 REFERENCES ............................................................................................................................................... 85 2.6.

CHAPTER 3 ..................................................................................................................................................... 96 

APPLICATION OF DYNAMIC PROGRAMMING AND MARKOV CHAIN TO EVALUATE THE HERD VALUE ........................................ 96 

 ABSTRACT ................................................................................................................................................... 97 3.1.

 INTRODUCTION .......................................................................................................................................... 98 3.2.

 MATERIALS AND METHODS ...................................................................................................................... 100 3.3.

 DP Model .......................................................................................................................................... 100 3.3.1.



vii 
 

 Markov Chain Model ........................................................................................................................ 103 3.3.2.

 Herd Value Calculation ..................................................................................................................... 103 3.3.3.

 Computer Implementation ............................................................................................................... 104 3.3.4.

 Model Parameters ............................................................................................................................ 104 3.3.5.

 RESULTS AND DISCUSSION ....................................................................................................................... 108 3.4.

 Herd Value Difference Between Reproductive Programs ................................................................. 108 3.4.1.

 RPO Difference Within an RP ............................................................................................................ 112 3.4.2.

 Implication for Dairy Farm Decision-Making and Management ...................................................... 116 3.4.3.

 CONCLUSIONS .......................................................................................................................................... 119 3.5.

 ACKNOWLEDGMENTS .............................................................................................................................. 120 3.6.

 REFERENCES ............................................................................................................................................. 121 3.7.

CHAPTER 4 ................................................................................................................................................... 124 

DAIRY CATTLE REPLACEMENT STRATEGIES OPTIMIZATION  VS. SIMULATION .................................................................... 124 

 ABSTRACT ................................................................................................................................................. 125 4.1.

 INTRODUCTION ........................................................................................................................................ 126 4.2.

 MATERIALS AND METHODS ...................................................................................................................... 127 4.3.

 Modeling Specifications .................................................................................................................... 128 4.3.1.

 Dynamic Programming Model.......................................................................................................... 128 4.3.2.

 Markov Chain Cow Value Model ...................................................................................................... 129 4.3.3.

 Shared Models Parameters .............................................................................................................. 131 4.3.4.

 Computer Implementation ............................................................................................................... 132 4.3.5.

 Model Comparison ........................................................................................................................... 133 4.3.6.

 Post Optimality Analysis ................................................................................................................... 133 4.3.7.

 Sensitivity Analysis ............................................................................................................................ 134 4.3.8.

 RESULTS AND DISCUSSION ......................................................................................................................... 134 4.4.

 Post Optimality Analysis ................................................................................................................... 137 4.4.1.



viii 
 

 Sensitivity Analysis ............................................................................................................................ 139 4.4.2.

 Computer Implementation of the Models ........................................................................................ 140 4.4.3.

 CONCLUSIONS .......................................................................................................................................... 141 4.5.

 ACKNOWLEDGMENTS .............................................................................................................................. 141 4.6.

 REFERENCES ............................................................................................................................................. 142 4.7.

CHAPTER 5 ................................................................................................................................................... 145 

STOCHASTIC ECONOMIC EVALUATION OF DAIRY FARM REPRODUCTIVE PERFORMANCE ...................................................... 145 

 ABSTRACT ................................................................................................................................................. 146 5.1.

 INTRODUCTION ........................................................................................................................................ 146 5.2.

 MATERIALS AND METHODS ...................................................................................................................... 148 5.3.

 Dairy Farm Specification ................................................................................................................... 148 5.3.1.

 Markov Chain Model ........................................................................................................................ 149 5.3.2.

 Random Module ............................................................................................................................... 152 5.3.3.

 STOCHASTIC PARAMETERS............................................................................................................................... 154 5.4.

 Milk Production ................................................................................................................................ 154 5.4.1.

 Involuntary Culling ............................................................................................................................ 156 5.4.2.

 Reproduction .................................................................................................................................... 158 5.4.3.

 DETERMINISTIC PARAMETERS .......................................................................................................................... 159 5.5.

 Live Body Weight .............................................................................................................................. 159 5.5.1.

 Dry Matter Intake ............................................................................................................................. 159 5.5.2.

 Calf Value.......................................................................................................................................... 160 5.5.3.

 Economic Parameters ....................................................................................................................... 160 5.5.4.

 Sensitivity Analyses ........................................................................................................................... 160 5.5.5.

 COMPUTER IMPLEMENTATION ......................................................................................................................... 160 5.6.

 RESULTS AND DISCUSSION ....................................................................................................................... 161 5.7.

 Base Run Results ............................................................................................................................... 161 5.7.1.



ix 
 

 Sensitivity Analyses ........................................................................................................................... 168 5.7.2.

 Implications for Farm Decision-making ............................................................................................ 170 5.7.3.

 Limitations ........................................................................................................................................ 172 5.7.4.

 CONCLUSIONS .......................................................................................................................................... 172 5.8.

 ACKNOWLEDGMENTS .............................................................................................................................. 173 5.9.

 REFERENCES ........................................................................................................................................... 174 5.10.

CHAPTER 6 ................................................................................................................................................... 177 

ECONOMIC IMPACTS OF NUTRITIONAL GROUPING IN DAIRY HERDS ............................................................................... 177 

Section 1 ..................................................................................................................................................... 178 

 ABSTRACT ................................................................................................................................................. 178 6.1.

 INTRODUCTION ........................................................................................................................................ 178 6.2.

 MATERIALS AND METHODS ...................................................................................................................... 181 6.3.

 Simulation Approach ........................................................................................................................ 181 6.3.1.

 Stochastic Events .............................................................................................................................. 184 6.3.2.

 Variation Control .............................................................................................................................. 188 6.3.3.

 MODELING FRAMEWORK ................................................................................................................................ 189 6.4.

 OBJECTS ...................................................................................................................................................... 190 6.5.

 Herd .................................................................................................................................................. 192 6.5.1.

 Cow ................................................................................................................................................... 192 6.5.2.

 Group ................................................................................................................................................ 199 6.5.3.

 TMR .................................................................................................................................................. 201 6.5.4.

 MODEL VERIFICATION AND VALIDATION ............................................................................................................ 201 6.6.

 RESULTS AND DISCUSION ......................................................................................................................... 202 6.7.

 CONCLUSIONS .......................................................................................................................................... 209 6.8.

Section 2 ..................................................................................................................................................... 210 

 ABSTRACT ................................................................................................................................................. 210 6.9.



x 
 

 INTRODUCTION ...................................................................................................................................... 211 6.10.

 MATERIALS AND METHODS .................................................................................................................... 213 6.11.

 Simulation Framework ................................................................................................................... 213 6.11.1.

 Cow Attributes ................................................................................................................................ 214 6.11.2.

 Cow Nutrient Requirements ........................................................................................................... 214 6.11.3.

 Grouping Dynamics ........................................................................................................................ 215 6.11.4.

 Case Study Herds and Projection Timeline ..................................................................................... 216 6.11.5.

 Economic Parameters ..................................................................................................................... 217 6.11.6.

 Scenario Analyses ........................................................................................................................... 218 6.11.7.

 RESULTS AND DISCUSSION ..................................................................................................................... 219 6.12.

 Grouping ......................................................................................................................................... 219 6.12.1.

 Economic Value of Nutritional Grouping ........................................................................................ 221 6.12.2.

 Formulated Diet .............................................................................................................................. 226 6.12.3.

 Captured Energy in Milk ................................................................................................................. 228 6.12.4.

 Captured Nitrogen in Milk .............................................................................................................. 231 6.12.5.

 Scenario Analyses ........................................................................................................................... 233 6.12.6.

 Limitations ...................................................................................................................................... 236 6.12.7.

 CONCLUSIONS ........................................................................................................................................ 238 6.13.

 ACKNOWLEDGMENTS ............................................................................................................................ 239 6.14.

 REFERENCES ........................................................................................................................................... 240 6.15.

CHAPTER 7 ................................................................................................................................................... 244 

DECISION SUPPORT TOOLS ..................................................................................................................................... 244 

 DECISION SUPPORT SYSTEMS DEMONSTRATION .................................................................................................. 245 7.1.

 Introduction ...................................................................................................................................... 245 7.1.1.

 Milk Curve Fitter ............................................................................................................................... 245 7.1.2.

 Wisconsin-Cornell Dairy Repro (UWCURepro$ 1.4.0) ....................................................................... 248 7.1.3.



xi 
 

 Retention Pay-off Calculator ............................................................................................................ 253 7.1.4.

 REFERENCES ............................................................................................................................................. 255 7.2.

CHAPTER 8 ................................................................................................................................................... 256 

CONCLUSIONS ..................................................................................................................................................... 256 

 GENERAL INTRODUCTION ................................................................................................................................ 257 8.1.

 ECONOMIC IMPACT OF REPRODUCTIVE PERFORMANCE ......................................................................................... 257 8.2.

 REPLACEMENT DECISIONS USING: OPTIMIZATION VS. SIMULATION ......................................................................... 260 8.3.

 ECONOMIC VALUE OF NUTRITIONAL GROUPING .................................................................................................. 260 8.4.

 DATA CHALLENGES ........................................................................................................................................ 262 8.5.

 DECISION SUPPORT SYSTEMS ........................................................................................................................... 263 8.6.

 REFERENCES ............................................................................................................................................. 265 8.7.

APPENDICES ................................................................................................................................................. 266 

APPENDIX 1 ........................................................................................................................................................ 267 

APPENDIX 2 ........................................................................................................................................................ 271 

DAILY MARKOV CHAIN MODEL ................................................................................................................................ 271 

 

  



xii 
 

List of Tables 

 

Table 2.1. Example of hierarchical structure in a dairy farm system (adapted from Sorensen 

(1998))............................................................................................................................................. 8 
Table 2.2. Transition probabilities of moving among different milk classes in current stage 

(year) to different or same milk class in the following stage ........................................................ 46 

Table 2.3. Brief modeling characteristics and application of subset of stochastic simulation 

studies in dairy industry (chronologically ordered). ..................................................................... 63 
Table 3.1. Summary of studied reproductive programs ............................................................. 107 
Table 3.2. Economic parameters

1
 ............................................................................................... 108 

Table 3.3. Herd values (US$) for 5 reproductive programs across 5 relative milk yields ......... 109 

Table 4.1. Economic variables (US$) used for both models: dynamic programming (DP) and 

Markov chain (MC) .................................................................................................................... 133 

Table 4.2. Spearmanôs correlation (rho) between dynamic programming model (DP) retention 

pay off (RPO) and Markov chain model (MC) cow value broken down by pregnancy status, 

parity and stage of lactation with number of pair observations from models (n) at each state. . 137 
Table 4.3. Economic parameters and herd structure resulting of Markov chain model simulations 

under different scenarios ............................................................................................................. 138 
Table 5.1. Average

1
 input variables of the model. Economic values are in US dollars ............. 149 

Table 5.2. Stepwise introduction of stochasticity into variables of the model and its effect on 

herdôs economics and dynamics. Expected value (EV) Ñ standard deviations based on 10,000 

replications run with stochastic Markov chain model. ............................................................... 163 

Table 5.3. Herdôs economic and structure dynamics summary (average ± standard deviation) 

from 2,000 replications at 5 levels of 21-day pregnancy rate after including involuntary culling, 

abortion, pregnancy rate, and milk production levels as random variables into the model. ....... 167 

Table 5.4. Effect of changes in input parameters on net return ($/cow per year) from 2,000 

replications across 5 different 21-d pregnancy rates ................................................................... 169 
Table 6.1. Thresholds and distributions for scheduling cow life events on the Monte Carlo model

..................................................................................................................................................... 183 

Table 6.2. Input dairy herd characteristics and structure at the beginning of the simulation .... 188 
Table 6.3. Herd structure and dynamics (mean (SD)) after a year over 1,000 replications of 

different input herds .................................................................................................................... 204 
Table 6.4. Input dairy herd characteristics and structure at the beginning of the simulation (d=0).

..................................................................................................................................................... 217 
Table 6.5. Formulated diet components for different nutritional group numbers and scenarios 

obtained by averaging 5 herds (±SD within herds) throughout the simulation period (d=1 to 

d=365) and over 1,000 iterations. ............................................................................................... 227 
Table 6.6. Economic gain in IOFC of grouping strategies under 5 studied scenarios. .............. 234 

 

  



xiii 
 

List of Figures 

 

Figure 2.1. Types of simulation (compiled from different sources) ............................................ 13 
Figure 2.2. Steps for conducting a successful simulation study (adapted from Law (2003)) ...... 16 
Figure 2.3. Transition diagram of 2 states Markov chain for pregnant and non-pregnant cows 

with the corresponding transition probability matrix (P) .............................................................. 20 

Figure 2.4. Schematic representation of dynamic programming model (based on Hardaker et al., 

2004) ............................................................................................................................................. 34 
Figure 2.5. Convergence of the present value from value function (panel A), and the calculated 

retention payoff (RPO = Keep value ï Replace value) (panel B) for different relative milk yields.

....................................................................................................................................................... 48 

Figure 2.6. Monte Carlo simulation building blocks (adapted from Brandimarte (2014)) .......... 51 
Figure 2.7. Inverse-transform method used to generate random variates from a discrete 

distribution of milk classes. The cumulative probability of being in 5 milk classes (relative to the 

average) is determined when a random number is drawn (0.82) its corresponding milk class 

number is determined from the x axis according to the CDF. ...................................................... 52 
Figure 2.8. Distribution of historical milk price (histogram) and the best fitted distribution on the 

data (beta distribution expression = 19+7×beta (0.589, 0.825)). .................................................. 58 
Figure 2.9. Panel A: cumulative distribution function from 1,000 replications of the cows in one 

herd under two scenarios of annual milk production (5 discrete milk production classes from 

Table 2.2 vs. continuous milk production from N~(10,000,1,300)). Panel B: cumulative 

distribution function obtained from averaging 1,000 replications of cows over 1,000 herds under 

three scenarios (milk price distributed according to beta distribution in Figure 2.8 vs. uniform 

distribution of milk price U~[19,26] vs. beta distributed milk price when the milk production 

followed normal distribution described above). ........................................................................... 59 

Figure 2.10. Continuum of information systems products (adapted from (Sauter, 2010)) .......... 77 

Figure 2.11. The system development life cycle (adapted from (Oz, 1998)) .............................. 80 
Figure 3.1. Ranking changes of 5 reproductive programs (RP) across 5 relative milk yields (%). 

Reproductive program 1 relied only on timed AI (TAI) and had a 21-d pregnancy rate of 17%; 

RP2 to RP5 combined TAI with estrus detection for 21-d pregnancy rates of 14, 16, 18, and 

20%, respectively. ....................................................................................................................... 110 

Figure 3.2. Product of retention payoff (RPO) by percentage of cows at each state in the first 3 

lactations for 3 reproductive programs (RP). Reproductive program 1 relied only on timed AI 

(TAI) and had a 21-d pregnancy rate of 17%; RP2 and RP5 combined TAI with estrus detection 

and had 14 and 20% 21-d pregnancy rates, respectively. ........................................................... 111 

Figure 3.3. Retention payoff (RPO) values for cows at different DIM of pregnancy in the second 

lactation for the average milk class and reproductive program RP5 (which combined timed AI 

with estrus detection and had a 21-d pregnancy rate of 20%). ................................................... 113 

Figure 3.4. Daily retention payoff (RPO) of reproductive program 5 (which combined timed AI 

with estrus detection with 21-d pregnancy rate of 20%) and average milk class under different 

scenarios. (A) Pregnancy at 55 DIM (ð), pregnancy at 200 DIM (----) during 9 lactations; (B) 

pregnancy at 120 DIM without pregnancy loss (ð), pregnancy at 120 DIM with pregnancy loss 

at 170 DIM and successfully rebred at 200 DIM (é.), and pregnancy at 120 DIM with 

pregnancy loss at 220 DIM and successfully rebred at 250 DIM (- - - -) during each of the first 3 

lactations. Labels show events: pregnancy (P), pregnancy loss (L), successfully rebred (R), and 

calving (C). ................................................................................................................................. 116 



xiv 
 

Figure 4.1. Relationship between ranking (higher to lower) from dynamic programming model 

(DP) retention pay off (RPO) and Markov chain model (MC) cow value over nine lactations (900 

cow states) ................................................................................................................................... 136 
Figure 4.2. The cow value (US$) from dynamic programming model (DP) and Markov chain 

model (MC) for a 20% change (from baseline scenario) in heifer price and milk production ... 139 
Figure 5.1. Milk production curves for open cows in their first and second lactations for 7% 

below and above average milk production curve. 7% below and above average represents the 

lowest and highest milk production levels, respectively, relative to the average milk production.

..................................................................................................................................................... 155 

Figure 5.2. Example of 1,000 random numbers used to introduce uncertainty to the risk of 

culling of second lactation cows throughout 735 day in milk. Black line represents average risk 

of involuntary culling for the second lactation and dots are sample of random numbers around 

this average. ................................................................................................................................ 157 

Figure 5.3. Net return ($/cow per year) variation across different 21-d pregnancy rates (21-d PR) 

from 2,000 replications after including involuntary culling, abortion, pregnancy rates, and milk 

production. Outliers were excluded. ........................................................................................... 166 
Figure 5.4. Cumulative density functions of expected net return ($/cow per year) for 5 different 

21-d pregnancy rates (21-d PR) when all stochastic parameters (involuntary culling, abortion, 

pregnancy rates, and milk production) were included into the model. ....................................... 171 
Figure 6.1. Panel A: Distribution of culling (%) for mastitis and death events through days after 

calving adapted from Pinedo et al. (2010).  Panel B: Cumulative distributions function of mastitis 

and death for the process of generating random variates from empirical distribution. .............. 186 

Figure 6.2. Diagram flow of simulation modeling framework. Panel A: The main application 

reads a preprocessed input file and then Initiali zer (1) is used to instantiate the herd object. 

Following completion of this process Groups are created (2), and cows are being initialized 

based on the input cows from a herd (3). Finally these cows are added to the appropriate group 

(obligated or optional). Panel B is a schematic representation of a herd with 3 optional groups for 

lactating cows. At the beginning of the simulation (day 0) and at the end of each month the cows 

are ranked based on their nutritional requirements, are regrouped among the optional groups, and 

fed with a TMR formulated based on the group requirements. Depending on their state, cows 

move into a dry group or fresh group. ........................................................................................ 191 

Figure 6.3. Density plot of culling due to death (light shade) and mastitis (dark shade) resulted 

from 1,000 replications of a 1,460-cow herd. ............................................................................. 203 

Figure 6.4. Panel A: Average body weight change after calving for first, second and Ó 3 

lactation cows. Panel B: Average body condition score (BCS) change for first, second and Ó 3 

lactation cows obtained from 1,000 replication of a 1,460-cow herd with 1 nutritional group.. 205 
Figure 6.5. Body condition score (BCS) density plots under 3 different NEL concentration of the 

diet for 3 nutritional groups of a 331-cow herd at the end of a 1-yr simulation with 1,000 

iterations. Average NEL concentration of the group + 0xSD (grey shade; leftmost distribution), + 

0.5xSD (white shade; middle distribution), and + 1xSD (rightmost distribution). Total area under 

the curves adds up to 1. ............................................................................................................... 207 
Figure 6.6. Simulated average NEL concentration of the offered diet between 1 nutritional group 

and 3 nutritional groups (marked as H=high, M=mid, and L=low groups) obtained from 1,000 

iterations of a 331-cow herd regrouping cows monthly. The diet NEL concentration was set as 

the average NEL concentration requirements of the group. Dashed line is the average NEL 

file:///C:/Users/Bucky/Dropbox/ThesisOutline/ThesisFiles/Final/AfshinDissertation.docx%23_Toc419112102
file:///C:/Users/Bucky/Dropbox/ThesisOutline/ThesisFiles/Final/AfshinDissertation.docx%23_Toc419112102
file:///C:/Users/Bucky/Dropbox/ThesisOutline/ThesisFiles/Final/AfshinDissertation.docx%23_Toc419112102


xv 
 

concentration of the diet of the 3 nutritional groups. Marker points indicate the monthly 

regrouping occasions when diet was reevaluated. ...................................................................... 208 
Figure 6.7. Average NEL (light shade) and MP (dark shade) concentrations of 3 diets from 1,000 

iterations provided to cows throughout days postpartum in a 331-cow herd ............................. 209 

Figure 6.8. NEL concentration of the requirements of 592 lactating cows (all lactating cows 

minus fresh cows < 22 d postpartum) from the 787-cow herd at d=300 of simulation. ............. 220 
Figure 6.9. Panel A: Difference between provided and required NEL concentration under 1, 2, 

and 3 nutritional groups based on the diet offered at the average NEL concentration of the group. 

Panel B: Difference between provided and required MP concentration under 1, 2, and 3 

nutritional groups based on the diet offered at the average MP+1xSD of the group. Both charts 

are for 592 lactating cows (all lactating cows minus fresh cows < 22 d postpartum) from the 787-

cow herd at d=300 in simulation. ................................................................................................ 221 
Figure 6.10. Average difference in income over feed cost (IOFC) of 2, 3, and 4 groups (G2, G3, 

and G4) and 1 group (G1). The average difference in IOFC is disaggregated in its components, 

which are rumen degradable protein (RDP) cost, rumen undegradable protein (RUP) cost, NEL 

cost, and the milk revenue. The zero line is the average IOFC obtained by 1 group under 

different MP scenarios and were equal to $2,883, $2,852, and $2,822 for diet formulated at 

average MP, average MP+0.5xSD, and average MP+1xSD, respectively. The labels on top of the 

bars are the average extra IOFC ± SD (SD among the herds) above 1 group. 4 nutritional groups 

were just applied to the largest herd (1,460-cow herd). .............................................................. 223 

Figure 6.11. Percentage of total NEL consumed captured in milk according to number of groups 

and for the 5 different herds (labeled by the number of adult cows available in the herds). ...... 229 

Figure 6.12. Offered diet average NEL (light shade) and metabolizable protein (MP; dark shade) 

after calving for the 727-cow herd under different number of nutritional groups from 1,000 

replications. ................................................................................................................................. 230 

Figure 6.13. Body weight (left) and BCS (right) density plot created from aggregating all the 

cows from 1,000 replications from the 787-cow herd for 1 (dark shade) and 3 (light shade) 

nutritional groups. Total area under the curves adds to 1. .......................................................... 231 
Figure 6.14. Percentage of total consumed N captured in milk according to number of groups 

and for 5 different herds. Label numbers represent the herd size in number of cows. ............... 233 
Figure 7.1. Snapshot of the online Milk Curve Fitter functionality and options separated by tabs

..................................................................................................................................................... 246 
Figure 7.2. Snapshot of the fitted curve (blue solid line) for test day milk productions (red dots) 

and MilkBot® function parameters estimated by the Milk Curve Fitter. ................................... 247 
Figure 7.3. Snapshot of the ñMilk Productionò tab with daily milk curve fitted in Figure 7.2 until 

600 days in milk. The predicted milk production between day 1 and day 305 is 25,320 lb. ...... 248 
Figure 7.4. Snapshot of herd description tab from UWCURepro$ 1.4.0. .................................. 250 
Figure 7.5. Snapshot of a section of the reproduction input tab from UWCURepro$ 1.4.0. ..... 250 

Figure 7.6. Snapshot of the results tab of UWCURepro$ 1.4.0 comparing Presynch-Ovsynch 12 

for first AI and Ovsynch for second and subsequent AI services when using it combined with 

estrous detection (current) against using it as 100% timed AI (alternative). Panel A represents a 

summary of the reproductive programs used with the total expected net revenue for each 

program and the extra gain/loss of choosing the alternative program over the current, which in 

this case adds to $25.5/ cow per year. Panel B is the detail description of the herd dynamics at 

the steady-state, always comparing the current with an alternative. ........................................... 252 
Figure 7.7. Snapshot from the on-line RPO calculator. ............................................................. 254  

file:///C:/Users/Bucky/Dropbox/ThesisOutline/ThesisFiles/Final/AfshinDissertation.docx%23_Toc419112110
file:///C:/Users/Bucky/Dropbox/ThesisOutline/ThesisFiles/Final/AfshinDissertation.docx%23_Toc419112110
file:///C:/Users/Bucky/Dropbox/ThesisOutline/ThesisFiles/Final/AfshinDissertation.docx%23_Toc419112110
file:///C:/Users/Bucky/Dropbox/ThesisOutline/ThesisFiles/Final/AfshinDissertation.docx%23_Toc419112110
file:///C:/Users/Bucky/Dropbox/ThesisOutline/ThesisFiles/Final/AfshinDissertation.docx%23_Toc419112110
file:///C:/Users/Bucky/Dropbox/ThesisOutline/ThesisFiles/Final/AfshinDissertation.docx%23_Toc419112110


1 
 

Chapter 1  

 

 

 

 

Introduction  

  



2 
 

1.1. Background 

A Dairy farm is a complex business enterprise (system) with many interacting factors (e.g., 

genetics, environment, market conditions, and management strategies) that determine the 

profitability of the business and the amount of the system output. Dairy farmers or their 

consultants (decision makers) need to make informed and robust decisions continuously (day-to-

day) to maintain a sustainable business, given the volatile and uncertain market and environment 

conditions. Thus, the ability of decision makers to make the right decisions at the right times is 

an important factor that influences the performance of a dairy herd. Traditionally, decisions are 

made using intuitive methods, consulting expert knowledge, and using summary statistics from 

historical records. This approach could lead to static decisions, which could be insensitive to the 

unstable and frequent changes in market and environment.   

Nowadays, dairy farmers have access to large amounts of data that could be used to guide on-

farm decisions. However, this historical data could not be used efficiently without further 

transformations and projections. The raw data need to be processed to obtain useful information 

and knowledge, which could be used for important on-farms decisions. This step of processing 

raw data to generate valuable information and knowledge using mathematical models and 

analysis methodologies is often called ñBusiness Intelligence.ò Thus the purpose of business 

intelligence is to provide decision makers with the tools and models required to make effective 

decisions in a timely manner. Mathematical models are usually abstracted into a computer 

program that requires data from different sources, and in return generates valuable information in 

a user-friendly manner to assist decision makers. These interactive computer programs are called 

decision support systems and should be an integral part of any successful business.       
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Hence, mathematical models are the cornerstone of the business intelligence and consequently 

decision support systems. These are indispensable pieces of any well-informed decision making 

process. Based on the objective and characteristics, mathematical models could be classified 

into: 1) prescriptive (mathematical programming techniques like linear programming and 

dynamic programming that find the best allocation of variables that maximize or minimize a 

predefined objective function), 2) predictive (supervised machine learning algorithms that 

predict a dependent variable like regression analysis), and 3) descriptive (simulation that help to 

understand the underlying complex system). These models are usually complex and need to be 

integrated into decision support systems, which could be successfully used in on-farm decision-

making. Thus, decision support systems bridge the gap between mathematical models and dairy 

farm decision makers to make economically sound decisions. 

This thesis aims to evaluates and quantify the effect of some of the most economically 

influential on-farm decisions (replacement, reproductive management, and nutritional grouping) 

using mathematical modeling. Consequently, the literature review discusses a subset of 

mathematical models and their applications in managing replacement, reproductive performance, 

and nutritional grouping. In this thesis a daily dynamic programming was developed to find the 

optimal replacement policy and consequently was used to evaluate cow values. Robust Markov 

chain was introduced to evaluate the effect of uncertain input variables on the output of the 

model. The last developed model was a terminating, dynamic stochastic Monte Carlo simulation 

for evaluating the economic impact of nutritional grouping of lactating cows. Moreover, the 

reproductive management model was transformed into a user-friendly decision support system 

for on-farm decision-making.  
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1.2. Thesis Outline 

Chapter 2 provides a comprehensive review of the literature on the system analysis, modeling, 

design, and the process of developing an abstract model of a system. The focus of the chapter is 

on 3 modeling techniques used in the rest of the thesis. The modeling techniques are Markov 

chain simulation, dynamic programming optimization, and Monte Carlo simulation. Thus, each 

section of chapter 2 starts with a detailed general explanation of the model and continues with 

modelôs applications in different fields in the dairy industry. The chapter concludes by discussing 

decision support systems, their importance, and examples in the dairy industry.  

Chapter 3 describes a daily dynamic programming model used for finding the value of the 

cows given optimal replacement decisions. These calculated values were weighted by the herd 

structure (or proportion of the cows in the state space at steady state) obtained from a daily 

Markov chain simulation, which produced what we called the ñherd valueò. The herd value was 

further used to evaluate the economic value of different reproductive performance.  

Chapter 4 systematically compares the optimal replacement policy obtained from an 

optimization and a simulation algorithm. Thus, in this chapter, we formally compare the 

replacement decisions made by a dynamic programming and a Markov chain simulation. The 

goal was to explore the possibility of using the new straightforward replacement formulation 

using a Markov chain simulation as opposed to a complex dynamic programming model. 

Chapter 5 introduces the robust Markov chain model, which was developed to introduce 

stochasticity into a standard Markov chain model. The developed model was furthermore used to 

evaluate the economic and dynamics of different reproductive performances under uncertainty.  
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Chapter 6 includes a comprehensive explanation of a dynamic stochastic Monte Carlo 

simulation model that was developed to evaluate the economic value of nutritional grouping. 

This chapter is divided into two sections: 1) design and validation process of the Monte Carlo 

simulation model, and 2) Applying the validated model on 5 commercial herds to evaluate the 

economic benefit of nutritional grouping of lactating cows.  

Chapter 7 gives a brief explanation of the developed decision support systems that could 

assist dairy farmers and their consultants in making better informed decisions.  

As seen, this thesis focuses on general mathematical models that could be used in different 

areas of dairy farm management. The studied and developed models were applied on a few 

economically important dairy farm decision management strategies. The thesis is not intended to 

provide a full survey of all the mathematical modeling techniques available for dairy farm 

decision-making.  
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 System Modeling 2.1.

 System Theory and Definition  2.1.1.

The application and popularity of system analysis has been on the rise since the published 

book of Bertalanffy (one of the founders of system theory) entitled ñGeneral system theoryò in 

1968 (Wikipedia, 2014). In summary, general system theory establishes an integrating 

framework, possibly involving several disciplines, that complex systems could be studied (Dent 

and Anderson, 1971). Thus, system analysis is a holistic view of a complete system (with their 

interrelations) with the goal of better understanding.           

A definition of a system seems appropriate before delving into its modeling. Different 

definitions of the term system can be found in the literature. For example, generally system is 

defined as a group of objects or entities that act and interact with each other towards the 

accomplishment of some purpose (Banks et al., 2009; Velten, 2009). Therefore, based on the 

definition, to name a few, there are biological, industrial, and agricultural systems. Agricultural 

systems can be divided into 4 types of systems: production, enterprise, regional and national, and 

international and global (Csáki, 1985). Here the focus will be on dairy cattle herds as a specific 

type of production systems.  

 System Components 2.1.2.

Systems exist in a hierarchical structure, which explains the need of interdisciplinary research. 

An example of the dairy herd system hierarchy is described in Table 2.1. In a dairy herd system 

cows are entities that interact with each other in the farmôs physical space (pens) towards a 

farmerôs goal, which could be overall herd profitability. One level higher the herd system could 

be a dairy farm with all the cows, machinery, and different crops. Many other subsystems can be 
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at lower levels, which themselves can have more detailed subsystems below them. Higher levels 

embody the next level of details in the subsystem. Each level of the hierarchy has its own 

input/output transformation and characteristics and can be used to describe the system. Thus, the 

point of entry in the hierarchy of any system study depends on the objective of the study and the 

number of included levels depends on the judgment and requirements of a study (Dent and 

Blackie, 1979). 

Table 2.1. Example of hierarchical structure in a dairy farm system (adapted from Sorensen 

(1998)) 

Levels Systems 

N+1 The dairy farm (dairy cows, machinery, crops)  

N The dairy herd (new born, heifers, lactating cows) 

N-1 The cow 

N-2 An organ 

N-3 A tissue  

é é 

In addition to system hierarchy, systems are also affected by outside factors or ñsystem 

environment.ò Characteristics of the system environment are its unpredictability and variability. 

System researchers usually establish boundaries around the system environment to facilitate 

understanding of the system function by restricting the intractable entities and variables; in 

reality no such boundary exists in any systems (Dent and Blackie, 1979; Banks et al., 2009). 

Applying this boundary in the studied system is important to modeling the system, since it 

determines exactly which subsystems must be explicitly represented in the final model structure 

of the system (Dent and Blackie, 1979).  

 Why Modeling? 2.1.3.

In order to explore the effect of a given change on the system, sometimes it is possible to 

construct a field trial to investigate the effect of changes on the systemôs outcome. However, this 
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is not always possible, especially when setting up the trial is too expensive, time consuming, and 

highly variable and difficult to control. In these situations, studies of the systems are 

accomplished through system modeling. In these cases models try to provide an adequate tool to 

break up the complexity and make the problem at hand more tractable (Velten, 2009). Therefore, 

researchers usually construct models to understand, analyze, and predict the behavior of complex 

systems (Gosavi, 2003) through simplification of the system in the built model. Modelsô usage is 

not a new idea and is not restricted to the use of computers and generally can be classified into 

mental, visual, physical, and mathematical models (Ragsdale, 2012). Here the emphasis is on 

mathematical models, which uses mathematical relationships to describe or represent a system or 

a complex problem (Ragsdale, 2012). Mathematical models are abstract models and can be 

represented as equations, functions, and computer programs (Gosavi, 2003). 

 Modeling Terms 2.1.4.

To understand and analyze a system using a model, there is a need to describe different terms 

used to model a system. The object of interest in the system modeling is called ñentity.ò 

ñAttributeò is the observed property of the entity. ñStateò of the system is the collection of 

variables used to describe a system at a given point. An ñeventò is an occurrence in the system 

that would change the state of the system. An example of these terms in a dairy herd system 

follows. A cow could be an entity. Its attributes could be milk yield, body weight, and body 

condition score. Its state variables could be milk production level (milk production potential), 

lactation number, and pregnancy status. And its parturition could be considered as an event.  
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 Mathematical Models Classifications 2.1.5.

Mathematical models use mathematical relationships and equations to represent a system. 

Ragsdale (2012) categorized mathematical models based on the degree of knowledge of the 

functional form of f(.) between the independent variables X1,X2,é,Xn and the dependent variable 

Y and the knowledge about the values of independent variables. Based on this knowledge, the 

mathematical models can be categorized into prescriptive, predictive and descriptive models. If 

the f(.) between dependent and independent variables is well-known and the independent 

variables are under researcherôs control the model is called prescriptive. These models include all 

the mathematical programming techniques such as linear programming, dynamic programming 

and network models. In the case that the functional form between dependent and independent 

variables (f(.)) are unknown or ill-defined and the independent variables are known and under 

researchersô control the model is called predictive, such as regression analysis and time series 

analysis. If the f(.) between independent and dependent variables are known, but the independent 

variables are unknown or uncertain the model is called descriptive. An example of these 

descriptive models is simulation. In this thesis, dynamic programming (Chapter 3), Markov 

chain (Chapter 5), and Monte Carlo simulations (Chapter 6) are studied and applied to dairy herd 

systems. 

 Mathematical Programming vs. Simulation 2.1.6.

Mathematical programming is a general term used to refer to a broad range of optimization 

algorithms. Most commonly used technique is linear programming, which is used to find 

complex planning and investment in different industries and governments (France and Thornley, 

1984). A mathematical programming model finds the combination of input variables that yields 

the optimum (maximum or minimum) output (finding optimum allocations). Thus, the purpose 
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of these models is to answer what to do? questions. Simulation models donôt have any 

optimization algorithm, and the purpose of them is to answer series of what if? questions 

(Sorensen, 1998).  

 Simulation 2.1.7.

Simulation is a particular type of modeling used to imitate (duplicate) the essence of a system 

without attaining the actual reality of the system (Wright, 1971; Robinson, 2004). Specifically, 

simulation is applying modeling techniques to a problem at hand with the objectives of 

understanding, solving a problem, or answering questions regarding the underlying system 

(Velten, 2009). Simulation models could be classified by three dichotomies (Law and Kelton, 

2007; Banks et al., 2009): 

1. Static vs. Dynamic (refers to time dependency of the model) 

2. Discrete vs. Continuous (refers to time scale of the system) 

3. Deterministic vs. Stochastic (refers to uncertainty of events in the system) 

Static models represent the system at a given point in time without considering time changes. 

On the other hand, dynamic models are the ones that follow the changes in the system through 

time, thus in dynamic models time is included as a driving variable. This means that in dynamic 

models, state of the system at t+1 is a function of the state at time t (Sorensen, 1998). Dynamic 

models, furthermore, could be grouped into terminating or transient simulations (finite horizon)  

and steady-state simulation (infinite horizon) (Rubinstein and Kroese, 2007; Banks et al., 2009) 

according to the output analysis. In a terminating simulation a well-specified initial conditions of 

the system is used as an input and the model runs for some time or a flagging event that stops the 

simulation. In this type of simulation the modeler wants to explore the evolution of the system 
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over time given the initial condition of the system. On the other hand, in steady-state simulation, 

the long-run properties of the system are of concern. The model starts with arbitrary state of the 

system and runs for a long time, that is until the time that the properties of the system is not 

affected by the initial conditions of the system (Law and Kelton, 2007; Banks et al., 2009). 

Discrete simulations are the ones in which the state of the system changes in discrete sets of 

points in time. Continuous simulations follow the change in the state of the system continuously 

through time. The choice of discrete or continuous model depends on the objective of the study 

and the available information about the characteristics of the system (Gosavi, 2003). 

Simulation models that produce the same output given a set of inputs are considered 

deterministic. Thus, input variables in deterministic models are described by their mean values. 

However, input variables in stochastic models are described by their probability distributions. 

Therefore, changes in the variance of input variables can change the mean of  modelôs output, 

whereas the results in deterministic models remain the same (Sorensen, 1998). Stochastic models 

can, furthermore, be divided into two types: 1) probabilistic models or Markov chain models and 

2) Monte Carlo simulation models. In Markov chain models the transition matrix governs the 

probability distribution of movement from one state to another in the next step. In Monte Carlo 

simulation models, discrete events are controlled by pseudo-random number generators from 

appropriate probability distributions related to the events.   

As it was discussed, an important property of the models is the hierarchical structure of the 

underlying systems (Table 2.1). Based on the systemôs hierarchy, there would be a distinction 

between empirical and mechanistic models (France and Thornley, 1984; Sorensen, 1998). In 

empirical models the output of the model relates to the input within the same hierarchy level. On 
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the other hand, a mechanistic model links adjacent levels in a way that parameters estimated at 

one level can predict the results of a higher level (Sorensen, 1998). Herd level simulation models 

are typically mechanistic because the herdôs production level is indirectly simulated by different 

milk classes of individual animals (subsystems; (Sorensen, 1998)). These characteristics of 

simulation models are summarized in Figure 2.1. 

Simulation is a two-phase process of building the model and experimentation on it. In this 

process the real system is replaced by a similar, but abstract, version of the system in a computer 

to overcome problems related to physical experimentation of the real system (Wright, 1971).  

 
Figure 2.1. Types of simulation (compiled from different sources) 

  



14 
 

  Advantages and Disadvantages of Modeling  2.1.8.

There are some considerations that make modeling advantageous over field trials and 

experimentations on the real systems. The most important factors that make modeling 

advantageous are related to cost, time, control of the experiments, and ability of comparing 

different system designs. Experimentation on real system often is expensive and requires a great 

amount of time to finish. Even in the case that these two factors are not prohibiting the inability 

to control some aspects of the experiment makes simulation and modeling techniques more 

appealing in some situations (Robinson, 2004). In addition to a way to estimate the performance 

of an existing system, modeling can be used to compare alternative proposed system design in a 

compressed amount of time (Law and Kelton, 2007).   

Disadvantages of modeling are the time required to develop the model, data requirements, 

expertise needed in developing a model, and possibility of overconfidence in the results 

(Robinson, 2004). The time required to build a full representative model of a system could be 

dramatic. To develop a representative model of a system, a great deal of ñaccurateò data from the 

system is required. Regardless of the quality of the developed model, the input data governs the 

accuracy and relevancy of the results of the simulation model (this usually referred to as 

ñgarbage in, garbage outò phenomena (Chung, 2004)). Overconfidence in the results of a 

modeling is one of those subtle disadvantageous of simulation. The results from a modeling are 

as much valid as the method and data used as an input of the model. It is easy to forget about this 

fact and over-interpret the results of the simulation with a high confidence. 
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  Simulation Study Steps 2.1.9.

To construct a successful simulation model from scratch, researchers have suggested different 

steps (Csáki, 1985; Dijkhuizen and Morris, 1997; Law and Kelton, 2007; Banks et al., 2009). 

The specific number of steps and the feedback process of these steps could vary among 

textbooks; however, the main structure of the steps and its iterative nature is the same (Figure 

2.2). The first step in this process is the problem formulation and setting up objectives for the 

simulation model. The simulation process starts up with a problem at hand and sets of objectives 

that need to be achieved by the simulation model. The designed model greatly depends on the 

data available on the system, and therefore the second step of simulation study is gathering data 

and creating useful information that could be used in the model. This step is also concerned with 

creating a conceptual model (model conceptualization) of the system and all the major points that 

need to go into the model in an abstract way. Constructing the conceptual model is as much art 

as science, especially with respect to the ability of the modeler to abstract the essential and 

important features of the system related to the problem at hand, and making essential 

assumptions in regards to the problem declared in the objective of the model (Banks et al., 2009). 

This is done to have a good enough model to answer the questions without dealing with 

unnecessary details that might clutter the results of the study. 
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Figure 2.2. Steps for conducting a successful simulation study (adapted from Law (2003))  
 

The best method in creating the conceptual model is with starting up with a simple model and 

adding in complexities in a stepwise manner (Banks et al., 2009). This would help the process of 

developing the simulation computer program in the next step. However, before building the 

computer model a validation is appropriate. This would be a simple sanity check of the 
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conceptual model and its components before going into the computer programming and 

development phase of the model. After validating the conceptual model of the system, the 

programming phase of the model starts. Here, the modeler needs to decide what software should 

be used in building the simulation model. The choice is either using a general programming 

language (e.g., C++, Java, and Visual Basic. NET), commercial simulation software (e.g., 

Arena
®
, SIMUL8

®
), or spreadsheet modeling using @Risk. Commercial simulation software has 

the advantage of reducing the required time of programming. On the other hand, general 

programming languages gives the modeler flexibility in modeling with the expense of time and 

programming expertise (Law, 2003). Given the choice of a general programming language for 

the development of the model, choosing an appropriate style of programming is important. 

Different styles of programming include structural (procedural), object-oriented, and functional 

programming. The choice of style of programming depends on the simulation method and the 

time available for the model development. Object-oriented programming approach, due to 

inherent link to real life objects with the objects in the computer program, has had large attention 

in the livestock literature (Jørgensen and Kristensen, 1995; Sequeira et al., 1997; Shaffer et al., 

2000). In this thesis, a separate chapter has been devoted to the modeling of a stochastic Monte 

Carlo simulation using object-oriented programming approach to evaluate the economic value of 

adapting nutritional groupings in lactating dairy cows (Chapter 6).  

The programming phase is an iterative process of adding new modules and code snippets, and 

testing constantly the new units and the overall performance of the modules together. In 

simulation studies this testing and debugging phase of the computer model is called verification 

of the model, which checks for correctness of the computer program for performing the 

simulation and correctly translating the conceptual model into a program (debugging the 
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program) (Law and Kelton, 2007; Banks et al., 2009). After this the developed computer 

program still needs to go under a validation check. Validation, checks the degree of agreement 

between the model and the target system (Sorensen, 1990), in other words, it determines if the 

model is an accurate representation of the system with respect to the study objectives (Law and 

Kelton, 2007). Usually, validation is considered to be the most difficult and therefore, both 

objective and subjective methods, are used to test the model (Sorensen, 1990). Objective 

validation of the model would include statistical tests to find the degree of agreement between 

the model outputs and the system performance (e.g., goodness of fit tests). However, in practice, 

it might be unfeasible to perform a field trial in parallel to the model. Thus, as it happens in most 

livestock models in the literature (Sorensen, 1990), subjective validation techniques are usually 

used. For the purpose of subjective validation the results from model could be compared with the 

original systemôs data, industry averages, expertise opinions, and illustrative graphs from key 

variables of the system.  

After the model is thoroughly validated the researchers need to design, conduct and analyze 

experiments to answer the questions that have been defined at the first step of the process. The 

most common approach for running different simulation experiments is to use sensitivity 

analysis. That is a systematic change of input parameters over a range to explore the effect of a 

given change on the outcome of the model.  

The final step is to document the model, including the conceptual model and the assumptions 

made throughout the building process, and publish the results obtained from the model in 

scientific magazines. 
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 Markov Chain Simulation Model  2.2.

Markov chain is a special type of a stochastic process with a key property. Stochastic 

processôs properties change randomly with time. The changing property is referred to as the state 

of the stochastic process (Gosavi, 2003). For example, a dairy herd system can be considered as 

a stochastic process, in which states (e.g., milk production and diseases) of its entities (dairy 

cows) are changing randomly through time (days in milk). The key property of Markov chain 

can be stated as (Hillier and Lieberman, 1986; Gosavi, 2003; Hardaker et al., 2004): 

 P{X (t+1) = j | X(t)= i} = f(i,j)  [1] 

Where X(t) is the system state space at stage (time) t, i is the current state of the system, and j 

is the next state of the system. This equation states that the probability of being in state j at next 

stage given the current state of i is constant and equals to the probability of moving between two 

states. In other words, the conditional probability of any future event, given any past event and 

the present state X(t)=i, is independent of the past event, and only depends on the present state of 

the process (Hillier and Lieberman, 1986).  This is a must condition for the Markov chain models 

and is called ñMarkovian propertyò or ñmemoryless propertyò of Markov chain models.  

Beside states variables, Markov chain simulation model is defined by its stage length and the 

transition probability matrix (P). Stage is the time unit between subsequent events in the Markov 

chain. Elements in the matrix P are the probability of moving from each state in the state space 

to a different or the same state in the next stage (t+1) of the process. Generally, Markov chain 

represents a system or process that moves between a number of states and the probability of 

being in different states in this process is governed by transition probabilities. The frequency of 

changes among the states is dictated by the stage length of the model. A transition diagram of a 

two states Markov chain process is illustrated in Figure 2.3. In this example, two states are for 



20 
 

pregnant and non-pregnant cows in a dairy herd at monthly time intervals. The diagram shows 

the possible transitions between states and the corresponding probability attached to it with a 

stage length of a month. Same transitions can be viewed in the form of the transition probability 

matrix (P). An important characteristic of the transition probability matrix is that the summation 

of the rows across different states should add to one. After all, the rows are probabilities of 

moving from one state to another in the next stage and they must add up to one.  
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Figure 2.3. Transition diagram of 2 states Markov chain for pregnant and non-pregnant cows 

with the corresponding transition probability matrix (P) 

In this hypothetical and simplified example of a dairy herd system, a non-pregnant cow can 

either stay in the current state (non-pregnant; 0.7) or become pregnant with the probability of 0.3. 

The same two way path could be argued for a pregnant cow. A pregnant cow could stay pregnant 

(0.9) or it could undergo pregnancy loss (0.1). This transition probability matrix is also called 

one-step transition probability, as it represents the probability of moving from the current state at 

stage t to another or the same state at stage t+1 (Hardaker et al., 2004), and because the transition 

probabilities do not change in time, is called stationary transition matrix (Hillier and Lieberman, 

1986). The important question in Markov chain models is to determine the state of the system in 

the future, regardless of the current state of the system. This is usually called the steady-state 

distribution or equilibrium distribution of a Markov chain and the obtained stabilized 
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probabilities are referred as steady-state or limiting probabilities (ˊj)  (Agrawal and Heady, 1972; 

Dijkhuizen and Morris, 1997; Hardaker et al., 2004). The steady-state distribution exists in the 

case that the Markov chain is irreducible (all states of a Markov chain communicate with each 

other). The term steady-state probabilities means that the probability of finding the process at 

state j after a large number of transitions converges to ˊj, and is independent of the initial 

probability distribution defined over the states (Hillier and Lieberman, 1986).  This distribution 

in small problems can be found in two ways. The first way is by multiplying one-step transition 

matrix (P) by itself multiple times until the elements of the result matrix do not change. The 

second method is to solve a series of linear equations obtained from the transition matrix entries.  

The first method to calculate the steady-state distribution is using a one-step transition 

probability (P1) for the current stage to find the next stage transition probability (P2). Therefore, 

P2 could be calculated by multiplying P1 by itself. By multiplying P2 by itself the transition 

matrix of the 4
th
 stage (P4) is obtained. By repeating this process the transition matrix converges 

to a matrix that does not change from one stage to another, and is called the steady-state 

distribution (Pn) of the system. Thus, the n-step transition probability matrix can be computed by 

calculating the n
th
 power of one-step transition matrix (Agrawal and Heady, 1972; Dijkhuizen 

and Morris, 1997). For example, for a two state process with transition probability as shown in 

Figure 2.3 the results would look like: 

 Ἔ
πȢχ πȢσ
πȢρ πȢω

    Ἔ
πȢυςπȢτψ
πȢρφπȢψτ

ȟἜ
πȢστχςπȢφυςψ
πȢςρχφπȢχψςτ

ȣ╟▪
πȢςυπȢχυ
πȢςυπȢχυ

 

The obtained Pn is the probability of having non-pregnant (0.25) and pregnant (0.75) cows at a 

steady-state situation of the system, given the one-step transition probability. In this simple 

example, the steady-state distribution was obtained after about 25 sequential multiplications of 
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the transition matrices. However, it is obvious that with more states and therefore bigger 

transition matrices this can be computationally expensive or even impossible.   

The second method finds the steady-state distribution by solving sets of equations obtained 

from the transition probability matrix and the fact that the probabilities across different states 

must add up to 1. In Figure 2.3 example, the steady-state probability of being at a non-pregnant 

(1́) and pregnant state (ˊ2) will be found as follows:  

ʌ πȢχʌ πȢρʌ  

ʌ πȢσʌ πȢωʌ 

ʌ ʌ ρ (Normalization constraint) 

Here, we have 3 equations and two unknowns and the steady-state distribution could be found 

using basic algebra. Solving these would give the same results as above, but in a faster and more 

compact way. In problems with thousands of these equations the equilibrium could be solved in a 

direct way using Gaussian elimination methods such as Gauss-Jordan method (Tijms, 2003) 

using available libraries and software packages. However, when the state space becomes very 

large these direct solution could suffer from computer memory problems (Tijms, 2003).  

In real-life dairy Markov chain models the transition matrix is very large (order of hundreds 

of thousands or millions) and sparse (a matrix with many 0 entries and few non-zero value). 

Sparsity (also called density is the fraction of zeros in a sparse matrix ) is the characteristics of 

dairy cow systems, in which a few transitions are possible according to age of the cows (Jalvingh 

et al., 1992). In these models using the matrix notation and solving sets of equations are 

computationally demanding and for big models even impossible, due to memory issues for 

storing such big matrices. In these kind of models, the equilibrium distribution is equal to 
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distribution of cows over all possible states in terms of relative numbers of cows, which is 

governed by the involuntary culling and forced replacements that keep the herd size constant 

(Jalvingh et al., 1992).  This method for finding the steady-state distribution was introduced and 

used in Jalvingh et al. (1992) and DeLorenzo et al. (1992), and the equations of this method were 

introduced by De Vries (2004) and were detailed in Giordano et al. (2012). This method is called 

an iterative approach of finding steady-state distribution (DeLorenzo et al., 1992; Tijms, 2003).  

 Markov Chain Models in the Dairy Herd Industry 2.2.1.

The probabilistic nature of the Markov chain model made it suitable for many problems 

facing the dairy industry. These types of models could usually be used for projection, economic 

evaluation, finding distribution of the farm size, and population structure in a long-run (Judge 

and Swanson, 1962). Markov chain application in dairy industry ranges from health and disease 

controls (Oltenacu and Natzke, 1976; Sorarrain et al., 1980; Collins and Morgan, 1992; Allore 

and Erb, 1999; Ivanek et al., 2007), and estimating the herd structure at the steady-state which 

could be used to explore managerial changes in the herd economics, dynamics, and its 

environmental impacts. Examples of the Markov chain applications in the literature are: 

environmental impacts of dairy herds (Cabrera et al., 2006, 2008; Bell et al., 2011, 2013), 

breeding technologies and reproductive performances (Jalvingh et al., 1993a; Yates et al., 1996; 

Giordano et al., 2012), add-in module to optimization techniques (DeLorenzo et al., 1992; De 

Vries, 2004; Kalantari et al., 2010; Kalantari and Cabrera, 2012), and making sub-optimal 

replacement decisions (Cabrera, 2012b).  

 Health and Diseases Controls 2.2.1.1.

Since the 1970, Markov chain model has been used to model the mastitis infection process in 

dairy cows (Oltenacu and Natzke, 1976; Sorarrain et al., 1980; Allore and Erb, 1999). Markov 
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chain is a fit for mastitis infection due to its sequential structure and natural stochasticity 

(Oltenacu and Natzke, 1976). In Oltenacu and Natzke (1976) study, each quarter of the udder 

was considered as the unit of the process and 7 possible infection states were explored. These 

states were as follows: not infected, clinical and subclinical streptococcus infections, clinical and 

subclinical staphylococcus infections, and clinical and subclinical infections with other 

organisms. Their model was discrete despite the fact that the infection process is continuous. The 

model divided a year in lactation to monthly stages and into lactating and dry months. Because 

the model was small (transition matrix of 7×7) the model was solved by the matrix multiplication 

method. Sorarrain et al. (1980) extended this Markov chain simulation by developing both 

continuous and discrete Markov chain models of the mastitis infection. Their model used the 

same state variables as the described study above. The results from continuous and discrete 

results were similar at steady-state and both models were in agreement in the output milk 

production of the models (Sorarrain et al., 1980). Markov chain model has been also used to 

evaluate the economic impacts of other diseases such as paratuberculosis and microorganism 

fecal shedding from dairy cows (Collins and Morgan, 1992; Ivanek et al., 2007). 

 The Effect of Managerial Changes on the Herd Output 2.2.1.2.

The main use of the Markov chain model is to describe the dairy herd structure at the steady-

state. Due to this capability, Markov chain models have been developed to explore the effect of 

input parameters on the economic or dynamic of a herd in a long-run. For example, many studies 

have used the Markov chain model to explore the environmental impact of changes on different 

input parameters (Cabrera et al., 2006, 2008; Bell et al., 2011, 2013). Cabrera et al. (2008) 

developed a monthly Markov chain model with 9 parities, 20 months in milk, and 9 months in 

pregnancy. The model was run for 156 months (till the steady-state) and the herd structure at the 
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steady-state was further used to observe the seasonal manure excretion by dairy cattle (Cabrera et 

al., 2008). Bell et al. (2011) explored the effect of improving productivity, fertility, and longevity 

of cows on global warming. For this purpose, using Markov chain model the herd structure was 

modeled over time. The stage length of 60 days was used and cows were described by using 4 

parities status (1 to 3 and 3+) and 10 within-calving interval periods of 60 days (40 states). The 

authors used the CO2 equivalent emissions to explore the effect of changes in productivity, 

fertility, and longevity on the potential impact of dairy systems on global warming. Bell et al. 

(2013) used the same model to investigate changes in cow production and fitness traits on net 

income and greenhouse gas emissions in dairy farms. These are samples of Markov chain used in 

estimating the herd structure in a long run to be used in evaluating the impact of a given change 

on the variable of interest. More examples of these models in a few publications with a high 

impact on future researches in dairy industry follow. 

One of the earliest monthly Markov chain models, used to simulate dairy herd dynamics, was 

developed by Jalvingh et al. (1993a). The model was used to study the effect of different calving 

patterns with the goal of optimization using linear programming in a subsequent study (Jalvingh 

et al., 1993b). Included state variables in the model were: 15 milk production classes (70 to 

130% of average milk production), 10 lactations, 17 months in lactation, time of conception, and 

month of calving to include the seasonality. Transition probabilities included milk production 

transition, involuntary and voluntary culling, and probability of pregnancy. This study greatly 

influenced following studies by describing the model and presenting its power in simulating herd 

dynamics to explore the effect of management and economic changes on the long-run behavior 

of a dairy herd. The authors, furthermore, suggested that the model should be integrated with the 
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management information system of the farm in order to gain extra insights before committing to 

management changes.  

St-Pierre and Jones (2001) developed a discrete, dynamic forecasting model using Markov 

chain model to manage milk production risks corresponding to the unit price and quantity 

produced (i.e., price and product risk management). The state variables for describing milking 

cows in the model were 3 parities, 104 weeks in milk, pregnancy status (0,1), and 40 weeks of 

pregnancy. The state variables for aging heifers were 156 weeks of growth, pregnancy status (0, 

1), and 40 weeks in pregnancy. From the state variables it is obvious that the defined stage length 

in the model was a week. Weekly aging process was followed using transition probabilities in 

pregnancy, involuntary and voluntary culling, abortion, dry-off, and freshening. The model, 

furthermore, used Bayes methods to estimate the transition probabilities for the state variables. 

The authors concluded that Markov chain could be used to successfully represent dynamic of a 

herd through time, and the fact that forecasted variance, increases monotonically through time in 

simulation (St-Pierre and Jones, 2001).      

The ability of Markov chain to find the steady-state distribution (herd structure) of the cows 

has also been used in replacement optimization studies (DeLorenzo et al., 1992; De Vries, 2004; 

Cabrera et al., 2006; Kalantari et al., 2010). In these studies, it is assumed that the optimal 

culling and insemination policies will affect the freshening patterns and flow of the animals in 

the herd, which in turns affect the milk production, feed requirements, and replacement needs 

(DeLorenzo et al., 1992). Thus, to account for these changes in cash flow of a herd, in 

optimization studies determining the steady-state structure of the herd seems necessary. For 

example, De Vries (2004) developed a monthly Markov chain simulation module for calculating 

the herd performance and statistics after finding the optimal replacement policy using dynamic 
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programming. This model used the same state variables as Jalvingh et al. (1993a) except having 

12 lactations. The transition probabilities were also the same, but with different values. This 

model was one of the few models described in detail and was used as a framework by other 

researchers (Cabrera et al., 2006; Kalantari et al., 2010; Giordano et al., 2012) in dairy 

management research.  

Cabrera et al. (2006) used a Markov chain simulation model to simulate a herd structure to 

explore the nitrogen leaching of dairy farms under different seasonal conditions. In this model 

they used a monthly stage Markov chain model with 9 lactations (0=heifers and 1-9 for each 

lactations), 9 months in pregnancy, and 20 months in milk (and in the case of heifers 32 months 

of age after birth) as the state variables to describe cows in the model. In this study, a similar 

approach was used to populate the state space of the cows using probability of pregnancy, and 

involuntary culling as the transition probabilities and stepping through time to obtain the steady-

state herd structure or proportion of the cows at each state.  

The stage length of the Markov chain model was reduced to one day in a model developed by 

Giordano et al. (2012) to study the reproductive and economic impact of different reproductive 

programs. The model aimed to do a comprehensive comparison among different reproductive 

programs (100% timed artificial insemination vs. combined heat detection and artificial 

insemination using Double-Ovsynch protocol), in terms of herd economics and dynamics. Thus, 

daily stage length was advantageous to create a good representation of dairy herds with respect 

to reproductive programs. The authors used 3 state variables of 9 lactations, up to 750 days in 

milk, and 282 days of pregnancy to describe the cows. Involuntary culling, death, reproductive 

performance, and pregnancy loss were used as the transition probabilities. Using the model 

authors concluded that as long as the conception rate of a reproductive program is above 30% the 
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combined program would outperform 100% timed artificial insemination program. The two main 

sources of the generated economic value from reproductive programs were also identified to be 

income over feed costs and replacement costs.  

 Summary of Managerial Changes 2.2.2.

Following these few examples in dairy industry the common state variables for describing a 

cow in the models are: a variable representing their age (lactation number or parity), a variable 

capturing the stage of a lactation (either month, week or days in milk), and a variable that 

monitors the pregnancy status of a cow (non-pregnant or month, week and days of pregnancy or 

days open in earlier models). Other variables also have been used to better describe a cow in the 

Markov chain model. For example, milk production class (DeLorenzo et al., 1992; Jalvingh et 

al., 1993a; De Vries, 2004; Kalantari et al., 2010), and season of calving (DeLorenzo et al., 1992; 

Jalvingh et al., 1993a; De Vries, 2004).  

Transition probabilities, due to the uncertainty of performance and survival of the cows, can 

be classified into 4 groups: reproduction, production, disposal (involuntary culling and death), 

and replacement (Jalvingh et al., 1993a). Based on the used state variables in the specific study 

one or more of these transition probabilities are used. For example, milk production transition 

probabilities were used in many studies such as DeLorenzo et al. (1992), De Vries (2004), and 

Kalantari et al. (2010).  

The size of the models discussed above ranges from 3,200 (Cabrera et al., 2006)  to more than 

600,000 states (Giordano et al., 2012). The overall size of the model directly depends on the 

number of state variables used to describe a cow in a herd, which indirectly depends on the stage 

length of the model. The total state space can be found by calculating the Cartesian products of 
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all the state variables dimensions. For example, in De Vries (2004) there would be a total state 

space of 518,400 (15×12×24×10×12). However, not all of these combinations are possible due to 

biology, and managerial constraints. An example of a constraint is the relation between 

pregnancy and month in milk. A cow cannot be 4 months pregnant and 2 months in lactation. 

After exclusion of those impossible states the total state number of that model by  De Vries 

(2004) was 343,440. The stage length, which indirectly affects the size of the model in these 

studies ranges from a month (De Vries, 2004) to a day (Giordano et al., 2012).   

 Sub-Optimal Replacement Decisions 2.2.3.

The latest application of the Markov chain simulation has been introduced by Cabrera (2012) 

in a new formulation of replacement problem and evaluating a cow value in dairy herds. In this 

monthly model 33 months after calving, 9 months in pregnancy and 10 lactations were used to 

describe cows in the model. The steady-state distribution of cows (herd structure at steady-state) 

was obtained by considering the monthly aging of the cows and transition probabilities on 

involuntary culling, pregnancy, and abortion. Thus, the steady-state herd structure was found like 

a regular Markov chain simulation by advancing through time and considering the transitions 

among states (Cabrera, 2012b). However, the idea in this model was to also estimate the net 

present value of a cow and its replacement for each stage of the model. The net present value of a 

cow and its replacement were calculated by adding all the economic values at each stage from 

the start of the simulation until the model reached steady-state. Economic values at each stage 

were calculated as the sum product of the net revenue of each state and the corresponding herd 

structure (Cabrera, 2012b).  Finally, the cow value was estimated by subtracting the net present 

value of a replacement heifer from the net present value of a cow and adding the transaction cost 

(Replacement cost ï cow salvage value ï calf value) to the result. The calculated cow value 
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further could be used to rank the cows and make culling decisions. Through a systematic 

comparison the sub-optimal replacement decisions found by this model was compared against 

optimal replacement decisions found by dynamic programming, which is reported in Chapter 4. 

The results showed a high correlation between the sub-optimal and optimal replacement 

decisions (Chapter 4). Thus, this user-friendly model could be used by farmers and consultants to 

assist them for making on-farm culling decisions.     

  Introduction to Robust Markov Chain  2.2.4.

As described, an application of Markov chain models is to estimate the herd structure, 

dynamics, and economics after a given change in input parameters (Jalvingh et al., 1993a; St-

Pierre and Jones, 2001; De Vries, 2004; Giordano et al., 2012). In addition, the model can also 

be used to estimate the biological variation among cows in a herd at the steady-state. This 

variation is due to transition probabilities (probability of pregnancy, culling, death, and abortion), 

which introduces variation among cows in a herd based on their current state and the chance of 

moving to another state based on the transition probabilities. However, the Markov chain model 

does not include uncertainty in the input parameters due to imperfect knowledge. Therefore, the 

model produces expected value for all the outputs given predefined input parameters (Jalvingh et 

al., 1992). This refers to the probabilistic nature of the Markov chain model as opposed to the 

stochastic nature in Monte Carlo simulations, which means that the probabilities used in the 

transitions are historical expected values, thus ignores the uncertainty around the expected values 

(Kristensen et al., 2006). To amend this condition in the Markov chains simulation models, a 

robust Markov chain model could be used. Therefore, a robust Markov chain model was 

developed and used to assess the economic value of reproductive performance in dairy farms 

under uncertain conditions (Chapter 5). This method follows the concept of robust optimization 
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used in the operations research literature (Iyengar, 2005). For example, robust dynamic 

programming considers sets of possible transition probabilities to account for uncertainty in the 

transition probabilities to capture its effect on the optimal policies being made by the model 

(Iyengar, 2005). The robust Markov chain model presented in Chapter 5 was envisioned to 

include such uncertainties and randomness that could be expected within and between targeted 

dairy farms. In this model, randomness was added to all transition probabilities, milk production 

levels, and reproductive costs using either of two methods: 1) using a polynomial regression 

model to build a white noise around the observed historical data for involuntary culling and 

abortion; and 2) using distributions -such as the normal distribution for milk production levels 

and triangular distribution for pregnancy rates. Including stochasticity into input parameters 

(transition probabilities) of a Markov chain model produces uncertainty around the outcomes, 

both herd economics and dynamics. Presenting the outcome of a Markov chain with uncertainties 

alongside the farmerôs risk preference knowledge could be a useful tool in making better-

informed decisions (Olynk and Wolf, 2008). Consequently, this might be helpful to direct their 

management practices to higher profitability given their current reproductive performance. More 

specifically, distribution in the outcomes could quantify the probability of reaching a target net 

return, thus, giving decision-makers a useful cue in directing their management practices to 

attain higher profitability given their current reproductive performance. These opportunities were 

not available within a standard Markov chain model.  
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 Dynamic Programming 2.3.

In 1957 Richard Bellman published a book entitled ñDynamic Programmingò which was used 

for solving sequential decision problems (Kristensen et al., 2006). Sequential decision problems 

are those that the decisions made in earlier times would affect the future decisions by the 

decision maker. Dynamic programming (DP), also known as Markov decision process (MDP) 

from Howardôs 1960 book, is a mathematical technique that utilizes divide and conquer 

algorithm to divide a multi-stage problem into a series of independently single stage problems  to 

solve it (Puterman, 1994). To define these dynamic decision problems, 5 main elements are 

needed: actions (or sometimes referred as decisions), stages (or decision epochs), state variables, 

transition probabilities, and stage returns (also called immediate rewards or costs) (Puterman, 

1994; Hardaker et al., 2004). The following notations are based on Puterman (1994) and 

Hardaker et al. (2004). Except actions and stage returns all other concepts have been described in 

the Markov chain model section earlier.  

 Dynamic Programming Terms and Concepts 2.3.1.

In the context of DP the total number of time periods that the decision needs to be made is 

called planning horizon (T) and is divided into decision moments (t) with the predefined and 

equidistant points in time (stage). The length could be yearly, monthly, weekly, daily, or any 

other time periods that makes sense for the problem at hand. The planning horizon in DP models 

could be either finite or infinite, here for simplicity only the finite planning horizon would be 

covered, but the methods are similar. Typically, at each stage an action (at  ɴA; A=predefined 

sets of finite actions), is chosen by the decision maker. Furthermore, the chosen action at a given 

stage is affected by the vector of state variables (St  ɴS; S=finite state space), used to describe the 

state of the system. The state changes between two consecutive stages (t-1 and t) are governed by 
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the transformation function (Űt). Transformation function is a function of the current state, 

transition probabilities (Pt(j|s,a), and the selected action (Űt=f(St,Pt,at)). Transition probability 

(Pt(j|s,a) denotes the probability that the system is in state j at time t+1, when decision maker 

chooses action a. In fact, this transformation function is the main difference of the Markov chain 

model and the DP model. Markov chainôs only controlling and governing state transitions is the 

transition probability matrix. However, DP is basically a Markov chain model with additional 

control of actions at each stage of the problem, and hence the name Markov decision process 

(Gosavi, 2003). 

In addition, at each stage t there is a stage return or immediate rewards that measures the 

payoff earned at that stage, and is a function of the current state and the decision made at the 

stage rt=f(St,at). The DP, MDP model, is a particular kind of sequential decision model, in which 

the available actions, the rewards, and the transition probabilities depend only on the current 

state and action not on states and actions occupied and chosen in the past (Puterman, 1994). 

Thus, the qualifier ñMarkovò is used because in these sequential models the transition probability 

and stage returns depend on the past only through the current state of the system and the chosen 

action by the decision maker (Puterman, 1994). This is the ñMarkovian propertyò (memoryless 

property) that has been introduced earlier in the Markov chain models. Thus, these two models 

have a lot of similarity in the modeling perspective. However, from the solution perspective, due 

to extra decision step the two models have different solution methods.  

 Dynamic Decision Model 2.3.2.

The sequential decision problem or dynamic decision model is represented symbolically in 

Figure 2.4. The state of the system at a specified point in time (t-1) is observed by the agent or a 

decision maker, and based on this an action is chosen. This choice has two consequences: 1) the 
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decision maker receives a stage return (rt), 2) the system according to the transformation function 

(Űt) evolves to a new state. At stage t the similar problem should be tackled by the decision 

maker, but based on the state and the immediate rewards of that state a different action might be 

selected (Puterman, 1994). Following this pattern the process evolves through time and the 

decision maker receives a sequence of rewards based on the selected actions. The action 

selection at each stage depends on the preselected objective function (performance metric), 

which could be either maximization or minimization of sequence of rewards or costs. The goal of 

the process is to find the policy (sets of actions that maps to states; in other words prescription 

for taking actions at each stage (Tijms, 2003)) that optimize the optimality criterion. Regarding 

the optimality criterion the decision maker has multiple options. The popular criteria are 

expected total reward, total expected discounted reward, and expected average reward per unit of 

output (Puterman, 1994; Kristensen et al., 2006). The choice of the criteria depends on the 

problem at hand and the planning horizon type (finite or infinite planning horizon). In the 

remainder of this thesis the total expected discounted reward, which is relevant and most used for 

livestock problems (Nielsen and Kristensen, 2014), will be used. The total expected reward is a 

good choice for solving finite planning horizon problems at hand. 

 

Figure 2.4. Schematic representation of dynamic programming model (based on Hardaker et al., 

2004) 
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  Finding Optimal  Solutions 2.3.3.

Solving a DP problem entails finding the policy (action map from states to actions) vector, 

and the expected discounted rewards for all the states of the problem. Methods available to find 

the optimal solutions of a DP problem include: value iteration, policy iteration, modified policy 

iteration, linear programming, and hierarchical Markov decision process. Only the value iteration 

algorithm would be described in this thesis, due to its popularity in the literature (both in 

livestock systems (Nielsen and Kristensen, 2014) and engineering (Alagoz et al., 2015)). This 

algorithm is straightforward to code in a computer program and it is also the best approach to 

solve large-scale MDP problems. Both of these factors contribute to the popularity of this 

method in the literature (Tijms, 2003). 

The bellman optimality equation, also known as functional or recursive equations, is as 

follow: 

 

ὠί  ÍÁØ
ᶰ
ὶίȟὥ ‗ ὴὮȿίȟὥὠὮ

ᶰ

 [2] 

Where V(s) is the total expected discounted reward, a is the action to be taken from set of A, 

r(s,a) is the immediate reward of state s when action a is chosen, ɚ is the discount factor for 

considering the time value of money and implies that decision maker has a time preference so 

that an immediate reward today is preferred over an identical reward at a later stage (Haran, 

1997), and ÐÊȿÓȟÁ is the one-step transition probability of going from one state to the next 

under action a. These are recursive equations and the solving process starts at the end of planning 

horizon (T) by setting the V(s) of all the states equal to their salvage value. After that, the 

process continues to the present time and each stage uses the total expected discounted rewards 
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calculated from the previous stages to find the next value, thus the recursive nature of these 

equations.  

  Value I teration Method 2.3.4.

The value iteration method which is often simply referred as DP, successive iteration or 

successive approximation could be used to find the optimal value functions from functional 

equations (Eq. 2). The functional equation reflects the Bellmanôs ñprinciple of optimality,ò 

stating that an optimal policy has the property that whatever the initial state and the initial 

decision, the remaining decisions must constitute an optimal policy with regard to the state 

resulting from the first transition (Puterman, 1994). 

Value iteration algorithm steps: 

1. (Initialization) Initialize V
T
(s) to zero or the salvage value and set T to the end of planning 

horizon 

2. (Value iteration step) For each s in the state space compute V
t
 (S) by 

ὠ ί  ÍÁØ
ᶰ
ὶίȟὥ ‗ ὴὮȿίȟὥὠ Ὦ

ᶰ

 

3. (Stopping test) If t = 0 go to step 4, otherwise go to step 2. 

4. For each s in the state space choose the action that has the maximum (minimum) of the 

V
0
(s).  

This algorithm could be applied to infinite planning horizon case by changing the third step 

(stopping test). In such case the algorithm would run until the convergence check criterion (ⱦ) 

stops the iterations. The decision found by value iteration are usually not exact and dependent on 
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the choice of ⱦ , so called ⱦ-optimal decisions (Puterman, 1994). The value iteration method has 

many different versions used to increase the efficiency of the method, all of which is described in 

Puterman (1994). 

  Optimizing Techniques Comparisons 2.3.5.

The value iteration algorithm described above is neither the most robust nor the fastest 

method to find the optimal policy of a problem (Tijms, 2003). In fact, in the infinite planning 

horizon the value iteration method finds only the approximate (ⱦ-optimal) value function and the 

policies related to that. In this regard policy iteration would be considered to be the most robust 

method to find the exact solution to infinite horizon problems. Here robust means that the 

algorithm converges very fast, and the number of iterations is practically independent of the state 

space (number of states in the model) and varies between 3 and 15 (Tijms, 2003). The algorithm 

needs to solve S (state space) number of linear equations at each iteration (Puterman, 1994; 

Tijms, 2003). Thus, this algorithm is not practical for large-scale problems due to computer 

memory issues (Tijms, 2003). The same problems of computation and memory issues exists in 

the linear programming solution to the MDP problems, because this method also needs solving S 

linear equations (Tijms, 2003). For these reasons, policy iterations can only be applied to small 

size problems (Kristensen et al., 2006).  Modified policy iteration combines features of value and 

policy iterations to increase the efficiency of the policy iteration algorithm for large-scale MDPs 

(Puterman, 1994), but the increase in efficiency highly dependent on the structure of the model 

(specifically the number of actions in the action sets and state space size).  

In general, the large-scale problems arise in the case that in order to describe a system in the 

MDP many state variables need to be used. This problem exists in every field; however, it is 

especially present in the animal replacement models with many sets of variables to describe the 
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variability in the traits and the biology of the animals into the model (Haran, 1997; Nielsen and 

Kristensen, 2014). This problem in the literature is referred to as the ñcurse of 

dimensionalityò(Kristensen et al., 2006); and refers to the exponential growth of the state space 

by addition of state variables into the model. This is a major problem with the policy iteration 

algorithm, and to a lesser extent for value iteration method, that needs to solve a series of linear 

equations of size |S| by doing matrix inversion. To solve this issue in large animal replacement 

problems Kristensen (1987, 1988) developed the hierarchical Markov decision processes. This 

method combines the computational advantage of the value iteration method with the exactness 

and higher efficiency of the policy iteration method to solve the ñcurse of dimensionalityò 

problem in animal replacement problems (Kristensen et al., 2006). This method tries to 

decompose the state space and reduce the number of states in the MDP, therefore creates a more 

intuitive way of modeling the replacement problem (Nielsen and Kristensen, 2014). A 

replacement problem modeled with the MDP model is usually very large due to inclusion of age 

(lactation and days in milk) of animals as state variables in the model. This inclusion makes a 

very big sparse transition matrix (a matrix with many zero elements), because only transitions 

from states at age a to states at age a+1 are possible (Kristensen and Jørgensen, 2000). However, 

hierarchic Markov decision process models, solves the problem in a special way. This approach 

does not include age as a state variable, and uses the fact that when replacement occurs, the life 

cycle of the replacement animal is restarted (Kristensen and Jørgensen, 2000). In addition, due to 

hierarchy structure, this approach could distinguish between permanent traits and traits that for 

the same animals vary over time. In the hierarchical MDP the model is split into one main 

process (founder process) and a series of sub-processes (also called child processes). Then, the 

permanent traits that are constant over time for the same animals but vary among animals are 
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defined as state variables of the main process and other variable traits are defined as state 

variables of sub-processes. In this model the main process has the infinite planning horizon and 

the sub-processes have the finite planning horizon equal to the maximum life span of an animal. 

Thus, the sub-processes take care of the age as the stage length without the need of considering 

age as a state variable. The optimization technique of this approach is a mixture of the policy 

iteration algorithm at the main process with infinite planning horizon for exact, and efficient 

results, and it uses computational feasibility of the value iteration algorithm for finite planning 

horizon of large state space at the sub-processes level (Kristensen and Jørgensen, 2000; Nielsen 

and Kristensen, 2014). For further discussion and algorithm of hierarchical MDP the reference is 

made to Kristensen (1987, 1988) and the herd management science book (Kristensen et al., 

2006).  

In contrast to other mathematical programming techniques, there is no standard mathematical 

formulation of a DP problem. Rather DP is a general type of approach to solve sequential 

decision problems and the formulation must be made for each particular situation (Hillier and 

Lieberman, 1986). Therefore, in this thesis (Chapter 3) only the dairy cow replacement 

formulations are covered. 

 Dynamic Programming Model in Optimal Dairy Cow Replacement 2.3.6.

 Characteristics of Animal Replacement Problems 2.3.6.1.

Many of operational management decisions on dairy farms are naturally sequential and 

stochastic. Decisions concerning replacement, insemination, and medical treatment are examples 

of these kinds of decisions on dairy farms. The main differences between animal production and 

replacement problems compared to industrial problems was summarized by Ben-Ari et al. 
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(1983). The animal production is a unique problem because of its uniformity (refers to difficulty 

in defining and measuring traits, and also the high variability in the traits), availability of 

replacements (standard replacement is not always available), and having a reproductive cycle 

(optimal time of replacement is influenced by the reproductive cycle). The DP modelôs 

sequential and stochastic nature are well suited as a framework for decision support in this area 

(Kristensen and Jørgensen, 2000), additionally introducing relevant state variables into DP 

models would be the solution to the mentioned problems in animal replacements (Kristensen et 

al., 2006). The focus of this review would be on determining the optimal replacement decisions 

in dairy cows as assets in a production process that needs to be observed periodically 

(sequentially) and make a decision to whether the current cow state should be replaced 

immediately or kept for another stage. This decision depends on the criterion of optimality used, 

net return from the present cow, and net returns from the replacement cows (heifers) (Jenkins 

and Halter, 1963).  

 History of Dynamic Programming in Dairy Cow Replacement 2.3.6.2.

Few years after introduction of DP models in operations research literature the first 

introduction of the technique in dairy cow replacements was by Jenkins and Halter (1963). 

However, White in 1959 was the first to introduce and illustrate the technique to solve on-farm 

decision problems with an application in optimal replacement of laying hens (Kennedy, 1986). 

Af ter that, the most influential, but unrecognized, study on the dairy cow replacement problem 

was the dissertation of Giaever in 1966 (Kristensen et al., 2006). This work with 5 levels of 

lactation, 3 levels of calving interval, and 7 levels of milk yield was an influential work 

considering the computational power of the time, and mainly due to important considerations 

regarding Markov property in replacement problems (Nielsen and Kristensen, 2014). Over the 



41 
 

years researchers used the technique to determine optimal replacement policies in dairy cows in 

different countries and using different stage length and state variables. Generally, the state space 

of models of these studies increased through time, and the stage length decreased. This could be 

resulted from the available computational power by advances in computer and its availability. 

There is about 45 studies with a focus on optimal dairy cow replacement in the literature, which 

has recently been surveyed in a book chapter by Nielsen and Kristensen (2014). Most of the 

early published works in the literature are solved by the value iteration algorithm. There were 

few early works that used multiple methods (value iteration, policy iteration, and linear 

programming) to illustrate each technique. After the introduction of hierarchical MDP in late 80s 

by Kristensen (1988) this model usage has increased and total of 11 studies in the literature is 

hierarchical models (Nielsen and Kristensen, 2014). A reason of this rather slow adaptation of 

hierarchical MDP, even with its efficiency and high performance characteristics, could be 

attributed to its difficulty in understanding and modeling. Most of the published hierarchical 

models in the literature used the computer software developed for hierarchical modeling in 

replacement problems by Kristensen (2003). From a personal experience even with this available 

software modeling a hierarchical MDP is a demanding task and has a steep learning curve. Here 

the focus would be on the recent works that had an influence on the current thesis (Chapter 3). 

 Review of the Models in the Dairy Cow Replacement 2.3.6.3.

State variables and stage length are important factors in MDP models. These factors 

determine the size, complexity, and the level of details of the model to be used in the decision 

making process. There are some commonalities among all the models (normal MDP not 

hierarchical MDP) in the literature for describing a cow in the model. These state variables are: 

age of a cow (usually as a lactation or parity number), stage of lactation (in terms of month, week 
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or days in milk depending on the stage length), pregnancy status (as stage of pregnancy or the 

length of calving interval), and milk yield level of a cow (van Arendonk, 1985b; van Arendonk 

and Dijkhuizen, 1985; De Vries, 2004). Furthermore, some researchers started to insert the 

health status of the cows as a state variable into the model for more detailed models. The main 

health status, studied by the researchers has been mastitis, because of its great impact on the farm 

economics and replacement decisions (Houben et al., 1994; Bar et al., 2008a; b; Cha et al., 2011, 

2014; Heikkilä et al., 2012). Adding extra states for mastitis (and generally health status) adds to 

the state space of the model, and hence all the mentioned studies, except (Heikkilä et al., 2012), 

that included mastitis as a state variable used the hierarchical MDP model. Regarding stage 

length there is a trend towards smaller time intervals by improving the computational power and 

modeling techniques. The earliest models stage lengths were mostly 1 year (or lactation) and 

decreased through time. Monthly stage lengths have been the most popular among the 

researchers, which is mainly due to small computational time even by using the value iteration 

algorithm. A daily stage length was used in two studies, one using the hierarchical MDP (Nielsen 

et al., 2010) and the other using the value iteration algorithm (Kalantari and Cabrera, 2012).  

In addition, as it was mentioned modeling replacement problem is dynamic and stochastic in 

nature and therefore needs transition probabilities for different risks involved in the process to 

take care of evolution of the process in time. These risks and transitions included in different 

models are mostly derived from the state variables in the model. Most of the studies have 

included transitions on pregnancy, involuntary culling, and milk yields (e.g., van Arendonk, 

1985; van Arendonk and Dijkhuizen, 1985; De Vries, 2004, 2006). In addition, some studies 

have also included an abortion risk into their calculations (e.g., De Vries, 2006; Kalantari et al., 

2010) and others introduced different transition probabilities among mastitis cases (Cha et al., 
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2014; Houben et al., 1994; Bar et al., 2008a; b; Cha et al., 2011). One of the most important 

aspect of the series of studies by van Arendonk (1985) on determining optimal replacement 

policy in dairy cows, is the 15 classes of milk yield and the transitions among different milk 

classes and the probability of having a heifer entering to the herd with a given milk class. This 

method was used later by many other researchers to have milk classes in the model and possible 

transitions among different classes at every decision point (e.g. DeLorenzo et al., 1992; Houben 

et al., 1994; Haran, 1997; De Vries, 2004; Kalantari et al., 2010). The 15 milk production classes 

have also been reduced to 5 classes  to make a daily DP model more manageable to compare the 

effect of different reproductive performances on the herd value (Kalantari and Cabrera, 2012).   

As it was mentioned DP model uses many economic and probabilistic parameters to find the 

optimal policy at the individual cow level. Price related parameters include milk price, calf 

value, carcass value of the culled cow, replacement heifer cost, veterinary cost, semen cost, feed 

costs, and the market interest rate. Probabilistic risks include involuntary culling, milk 

production and transition, pregnancy, and abortion. Not all of these parameters have an equal 

impact on average herd life (representing the average time that a cow stays in the herd) or the 

replacement rate (voluntary culling decided by optimal decisions) in DP models. Different 

studies determined that the most important factor affecting replacement rate was the transaction 

cost for replacement (difference between carcass value and the price of replacement heifer (van 

Arendonk, 1985b; van Arendonk and Dijkhuizen, 1985; Cardoso et al., 1999; Kalantari et al., 

2010)). Average milk production level also has a considerable impact on the replacement in 

dairy herds (Cardoso et al., 1999; Kalantari et al., 2010). A 20% increase and decrease in milk 

price and involuntary culling rate had a smaller effect on the average herd life (Kalantari et al., 

2010).  
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 Retention Payoff 2.3.7.

In the process of determining the optimal replacement policy for dairy cows, MDP (DP) 

models also create an evaluation of the current dairy cow in the model, given total expected 

discounted rewards is used as the optimality criterion. Based on the method of calculations the 

characteristics of this calculated value for every state cow differs. Future profitability, which is 

the difference between expected net present value of cash flow at the current stage (the value of 

optimal decision at the current stage) and expected net present value of cash flow for 

replacement of the cow (van Arendonk, 1985b). The lower bound of the calculated future 

profitability is zero, which means that the optimal decision is to replace the cow, and the positive 

values represent the expected profit by keeping the cow until the replacement is optimal instead 

of immediate replacement. Another way of calculating the cow values is using retention payoff 

(RPO) as was introduced in De Vries (2004). This value, which is calculated for every cow state 

in the model, is based on comparing the expected net present value of cash flow from keeping a 

cow versus expected net present value of cash flow of immediate replacement. The RPO can take 

negative and positive values. A negative RPO represents the opportunity costs of keeping the 

cow in the herd until the next decision point, and positive value is the expected value of the cow 

in the herd (Kalantari et al., 2010). Thus, the RPO (or future profitability) could be used to rank 

the cows based on their future expected value and be of an assist in culling decisions on dairy 

farms.  

Moreover, because RPO evaluates the value of a cow compared to its replacement it has many 

other usages than ranking cows for replacement decisions. These examples include evaluating 

the economic value of pregnancy and abortion (De Vries, 2006), finding the cost of an extra day 

open (Groenendaal et al., 2004), finding economically optimal voluntary waiting period 
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(Inchaisri et al., 2011), to evaluate the economic impact of reproduction performance, such as 

estrus detection and conception rate (Boichard, 1990; Inchaisri et al., 2011, 2012; Kalantari and 

Cabrera, 2012), economic value of lactational treatments of subclinical mastitis (Swinkels et al., 

2005), and economic cost of generic clinical mastitis (Bar et al., 2008a).  

The same factors that affect the replacement rate in the DP model also drive the average RPO 

determined by the model. The average RPO indicates the average value of all the cows in the 

herd under study. The same change that has a great impact on the replacement rate and average 

herd life also affects the RPO greatly (herd average milk production, price of replacement heifer, 

and carcass price). As expected, changes in parameters that increases the replacement rates 

results in decreases in average RPO of the cows in the herd (Kalantari et al., 2010). Although, all 

these factors affect the absolute value of the  RPO, the important matter for evaluating RPO is to 

rank the cows compared to their herd mates (Shahinfar et al., 2014), and also notice the RPO 

trend throughout the lactation (Groenendaal et al., 2004). 

 A Simple Dairy Cow Replacement Demonstration 2.3.8.

A simple example of a dairy cow replacement problem, adapted and modified (using realistic 

values) from the ñherd management scienceò book (Kristensen et al., 2006), will be presented 

and solved using the value iteration algorithm. In this example the stage length is a year (or 

lactation), and cows are described in the model using 5 levels of relative milk production. The 

milk production is the milk production of each cow state relative to the herd average (Chapter 3). 

Transition probabilities of changing a milk class from one lactation to another and the probability 

of a heifer entering into one of the milk classes are based on the assumption of normal milk 

curves as described in van Arendonk (1985). The original 15 milk classes were reduced to 5 milk 

classes in Kalantari and Cabrera (2012), which will be used in this simple example. Transition 
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probabilities under two possible decisions of keep and replace are shown in Table 2.2. Transition 

probabilities under the keep decision shows how likely the cows are going to change milk classes 

from one year to another. For example, a cow with an average milk class has a probability of 

0.452 to stay in the same class, 0.238 to change just one class, and 0.036 to change 2 milk classes 

(Table 2.2). Cows that are in higher and lower classes have a tendency to the average milk class. 

Transition probabilities under the replace decision show the probability of a heifer with a specific 

milk class entering the herd (Table 2.2). The final component of a replacement problem is the 

expected net revenue of different milk production class under keep and replacement decisions. 

The net revenue of different milk production classes under the keep decision is assumed to 

increase linearly from $1700/cow per year for 76% class to $3700/cow per year for 124% class 

(linear factor of $500 per each higher class). A constant transaction cost (Replacement price ï 

calve value ï carcass value) of $700 was subtracted from the values above to find out the value 

of new heifers entering the herd. 

Table 2.2. Transition probabilities of moving among different milk classes in current stage 

(year) to different or same milk class in the following stage 

Current 

relative 

milk class 

(%) 

Transition to other milk classes at next 

stage under ñKeepò 

 Probability of a heifer at different 

milk classes under ñReplaceò 

 76 88 100 112 124  76 88 100 112 124 

76 0.302 0.449 0.219 0.029 0.001  0.07 0.24 0.38 0.24 0.07 

88 0.117 0.386 0.383 0.106 0.008  0.07 0.24 0.38 0.24 0.07 

100 0.036 0.238 0.452 0.238 0.036  0.07 0.24 0.38 0.24 0.07 

112 0.008 0.106 0.383 0.386 0.117  0.07 0.24 0.38 0.24 0.07 

124 0.001 0.029 0.219 0.449 0.302  0.07 0.24 0.38 0.24 0.07 
 

 

The value iteration algorithm, as described above, was implemented in the Python language 

(Python Software Foundation., 2001) to solve the dairy replacement problem (Appendix 1 Script 
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1). The model was run for 50 stages with a discount factor of 0.85 as it was described in the 

value iteration algorithm and Eq. 2. The present value of the 5 relative milk classes over 50 

stages are presented in Figure 2.5 panel A. It is obvious that the value stabilized after around 30 

stages (30 years) in the future. The difference between these present values shows the relative 

value of each state compared to the others (Kristensen et al., 2006). For example, having a cow 

with an average milk production (100%) has $865 economic advantage over 12% below average 

(88%). Another important result that could be calculated from the results is the difference 

between the keep and replace values (RPO; Figure 2.5; panel B). This value shows the economic 

advantage of keeping a cow versus replacing it. Thus, whenever the RPO value drops below zero 

the best decision would be to replace the cow. In this simple example, given the input parameters 

used, the lowest milk class cowôs RPO (76% or 24% below average) was evaluated to -$48, 

which is the signal for replacement. The decision for other cows would be to keep them until the 

next decision stage. 
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Figure 2.5. Convergence of the present value from value function (panel A), and the calculated 

retention payoff (RPO = Keep value ï Replace value) (panel B) for different relative milk yields. 

 

Should be noticed that this is a simplified example and in real replacement models, besides 

milk production many other state variables should be considered to describe a more realistic cow 

in the model. 
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 Monte Carlo Simulation 2.4.

Monte Carlo simulation, generally called stochastic simulation or just a simulation, intends to 

estimate the performance measures of an abstract model built from a given system that is 

affected by random input variables. This is usually done to obtain a better understanding of the 

system with respect to decision making under uncertainty of the system. In terms of dependent 

and independent variables the objective of simulation is to describe the distribution and 

characteristics of the modeled performance measure (output values; Y), given the distribution 

and values of the independent variables (input values; X1, X2, é, Xk) (Ragsdale, 2012). It 

models interrelations among the input variables to exploit the uncertainty in input values towards 

better decision making under risk (Hardaker et al., 2004). Monte Carlo methods were first used 

to solve physics related problems. In the 1950s, these methods were used in Los Alamos when 

working on developing the hydrogen bomb and the term Monte Carlo was coined after a well-

known gambling house in the area (Brandimarte, 2014). Others (Dijkhuizen and Morris, 1997; 

Csáki, 1985) have connected the term Monte Carlo with the analogy between games of chance in 

casinos (e.g., roulette wheel) and the need of random numbers in the simulation. 

Monte Carlo methods are a class of computational algorithms that rely on repeated random 

sampling from specified distributions to compute the distribution of outputs, and have broad 

areas of applications in different disciplines. Monte Carlo methods could be separated, but not 

fully, into two techniques. These methods are: Monte Carlo sampling and Monte Carlo 

simulation. The former term is relevant when the Monte Carlo sampling is used for 

approximating a numerical integral (often multidimensional and ill-behaved) and some statistical 

computing (Brandimarte, 2014). A famous example of applying Monte Carlo sampling is to 

estimate ˊ.  In general this method involves random sampling with the goal to estimate a 
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deterministic value (Brandimarte, 2014). Thus, this way of applying Monte Carlo is to solve 

static and deterministic problems. Monte Carlo simulation, on the other hand, accounts for the 

dynamics of the systems and entails generating different samples from the model to estimate a 

probability or an expectation over time (Brandimarte, 2014). These methods are not fully 

separable because both methods try to estimate a probability or an expectation by generating 

random numbers, and in principle any dynamic simulation can be considered as the estimation of 

the integral of a possibly quite complicated function (Kristensen et al., 2006; Brandimarte, 

2014). This distinction between Monte Carlo sampling and simulation is not common in the 

literature. For instance, this has not even been mentioned in some other textbooks (Law and 

Kelton, 2007; Banks et al., 2009). These textbooks use the Monte Carlo simulation as a general 

term to refer to both Monte Carlo sampling and simulation. Thus, in this later view Monte Carlo 

simulation could be either classified as static or dynamic based on the way that the model 

incorporates the time dimension in the model (Law and Kelton, 2007; Banks et al., 2009). 

Hereafter, the identifier of static or dynamic is used to define the simulation method.  

 Monte Carlo Simulation Steps 2.4.1.

The building blocks of a typical Monte Carlo simulation following Brandimarte (2014) are 

represented in Figure 2.6. 

1. Pseudo-random number generation. The cornerstone of any Monte Carlo method is the 

ability to efficiently generate streams of random numbers from a uniform distribution Ui 

(0, 1) because the output of system is highly dependent on this first step. Assuming a 

computer is used to generate random numbers, there are a number of methods that could 

be used to generate random numbers. The most widely used method in different 

programming libraries (packages) is the mixed congruential method. The method 



51 
 

generates a sequence of random numbers by calculating the next one from the last one, 

given an initial random number (called the seed) (Hillier and Lieberman, 1986). Based on 

the method, the numbers generated should be called pseudo-random numbers (instead of 

random numbers), due to the predictability and reproducibility of the generated numbers 

with computers (Hillier and Lieberman, 1986; Law and Kelton, 2007). This fact proves to 

be useful in developing, debugging, and reducing the variance of the results in the Monte 

Carlo simulation models (Banks et al., 2009). For brevity, herein, the term random 

number generation is used.  

 

Figure 2.6. Monte Carlo simulation building blocks (adapted from Brandimarte (2014)) 

 

2. Transformation to random variates.  Given the sequence of the generated random 

numbers there is a need to generate random observations from an appropriate 

distribution. Generating random numbers from well-known distributions (e.g., 

exponential, uniform, and triangular) or empirical distributions is called random variate 

generation, and the most basic technique used for this generation is called inverse-

transform technique (Banks et al., 2009). Implementing this technique is straightforward, 

but not always the most efficient way to generate random variates (Banks et al., 2009). 

Using the inverse-transform technique potentially one could generate random variates 

from any distribution (Banks et al., 2009; Hardaker et al., 2004). This technique is a 

method of choice for univariate random variates from continuous distributions when the 

cumulative distribution function (CDF) is easily invertible (e.g., exponential, uniform, 



52 
 

Weibull) (Devroye, 2006). Even though discrete distributions are not invertible, the same 

method could be used to generate random variates. The method can be described 

graphically or by using the equations for specific CDF.  A graphical representation of the 

method in a discrete case for generating random variates from 5 milk classes shown in 

Table 2.2 is displayed in Figure 2.7. 

  

Figure 2.7. Inverse-transform method used to generate random variates from a discrete 

distribution of milk classes. The cumulative probability of being in 5 milk classes 

(relative to the average) is determined when a random number is drawn (0.82) its 

corresponding milk class number is determined from the x axis according to the CDF. 

 

The first step is to plot the CDF of the target function (created from Table 2.2). The 

second step is to generate a random number U1(0,1). The last step is matching the U1 

against the appropriate value on the horizontal axis. In this example by drawing 0.82, the 

corresponding milk class number is 4. In a continuous case, this translates to setting the 

inverse of the CDF function equal to U1 and to solve the equation for x. Thus, in both 

cases generated variates from distributions are in direct proportion to the respective 

probability of the target distribution function. A similar approach with interpolation can 
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be used for empirical distributions, which is explained in Chapter 6. In this method the 

shape of the target distribution is not considered for random variate generation, which 

means that for heavy-tailed distributions this approach uses a large number of samples to 

generate the target distribution (Hardaker et al., 2004). Techniques used to decrease the 

number of required sampling in the Monte Carlo simulation are called variance reduction 

methods (such as Latin hypercube sampling) that will be briefly discussed later.  

In addition, in the cases that the CDF is not invertible or computationally expensive and 

difficult to calculate there are other methods available. For some well-known 

distributions direct transformation could be used, which does not require sampling. For 

example, Box-Müller is a method for generating random variates from normal 

distribution. When the direct methods are computationally expensive or unavailable the 

method called rejection-sampling could be used. This method uses the probability density 

function (PDF instead of CDF) of the target distribution. In summary, in this method, an 

alternative probability distribution (G) is needed, which has an efficient random number 

generator algorithm and close to the target probability distribution function (F). Then, a 

random number from G is drawn and is compared to F, which will be accepted only if it 

falls under the F distribution, otherwise rejected (Rubinstein and Kroese, 2007). The 

efficiency of this method depends on the closeness of G and F (target PDF). There are 

other techniques that could be used for generating random variates and the reference is 

made to the Monte Carlo simulations textbooks (Devroye, 2006; Law and Kelton, 2007; 

Rubinstein and Kroese, 2007).  

There are also some generic methods called Markov chain Monte Carlo (MCMC) for 

generating samples from any arbitrary distribution and also from multivariate 
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distributions (Kristensen et al., 2006; Rubinstein and Kroese, 2007). The most prominent 

MCMC algorithms are Metropolis-Hasting and Gibbs samplers (Rubinstein and Kroese, 

2007).  

3. Domain-Specific sample path generation. This step is concerned with building a realistic 

computer representation of the underlying systemôs characteristics. It is highly related to 

the conceptual models built from the system, degree of details included, and the objective 

of the model. Thus, unlike previous steps, this one is specific to the system, the goal of 

the study, and the problem at hand. It uses sets of input parameters to define and initialize 

the system and a set of decision rules that govern the behavior of the model with respect 

to the parameters (Kristensen et al., 2006). For example, to model a dairy cow milk 

production, body weight, and reproductive status can be used to describe a cow and the 

cut-off days in milk for breeding can be used as a decision rule. In this step, streams of 

random variates generated in the previous step ({Xj}) are used to generate different 

replications of the system. Each replication generated in this step is called the sample 

path or the realization of the simulated system.  

4. Output analysis. Before using and recommending the results from the simulation 

verification and validation of the results should be an integral part of every simulation 

study. Verification checks the conceptual model to be correctly implemented in the 

model, and consist of debugging and checking the computer implementation. Validation 

attempts to confirm if the model is an accurate representation of the system (Banks et al., 

2009). Compared to verification, validation is more complicated and both objective and 

subjective approaches are available for it (Sorensen, 1990). Objective validation of the 

model would include statistical tests to find the degree of agreement between the model 
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outputs and the real farm performance (e.g., goodness-of-fit tests). However, in practice, 

it might be unfeasible to perform a field trial in parallel to the model. Thus, as it happens 

in most livestock models in the literature (Sorensen, 1990), subjective validation is 

commonly used. Model outputs are contrasted against original data, industry averages, 

and expert opinions in the field. Visual graphs could also be used to compare the results 

with expected results.  

After checking the model the last step is to summarize the results into estimates, usually 

in the form of point estimates and confidence intervals. In this step it is important to find 

out the number of replications needed to gain the degree of precision in the point 

estimate. Statistics formulas are available to calculate the number of replication needed to 

obtain a specific precision, which directly relates to the maximum tolerable margin of 

error in the study (reference on these calculations are made to textbooks (Rubinstein and 

Kroese, 2007; Banks et al., 2009). Sensitivity analysis could also be used to explore the 

behavior of the model using different input parameters. 

 Variance Reduction Methods 2.4.2.

Monte Carlo simulation methods are generally flexible and inherently inefficient. As it was 

discussed in output analysis (and also random variate generation), these methods require a large 

number of replications to acquire the level of precision needed by the study (Brandimarte, 2014). 

Generally, the precision of an estimate can be improved by increasing the number of sample size 

(n; replications). However, this would be an inefficient way to improve the precision of an 

estimate, because the width of a confidence interval around an estimate decreases with respect to 

ӏn (Brandimarte, 2014). This inefficiency in the case of big models makes a difference with 
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respect to the computational time needed to get precise information. Thus, the goal of variance 

reduction methods is to obtain precise and relevant information at a given number of replications 

(n) without introducing any bias in the estimator. 

These variance reduction strategies could either be tricks to improve the sampling from a 

distribution or more sophisticated techniques used to synchronize the random number streams of 

a model for more relevant output analysis (Brandimarte, 2014). The former strategy tries to 

improve the efficiency of sampling compared to inverse-transform algorithm. Here, just the Latin 

hypercube sampling among stratified sampling methods will be briefly discussed. In this 

technique the target CDF is divided into n (sampling size or replications numbers) equi-probable 

intervals (and hence the name stratified), which will be followed by two step processes of first 

selecting the interval using a random number and second generating a second random number to 

determine where within the selected interval it falls (Hardaker et al., 2004). This technique 

covers two drawbacks of inverse-transform method: 1) the pure randomness of random number 

generation might not provide a uniform profile from the target CDF, and 2) for getting a precise 

estimate certain portions of the distribution might carry more weight than other parts (Hillier and 

Lieberman, 1986). 

The second strategy is to use synchronized common random numbers (Rubinstein and Kroese, 

2007; Banks et al., 2009). In this method, the same stream of random numbers (common random 

numbers) is used for the same purposes (synchronized) among different scenarios of the model. 

This means that same stream of random numbers are used for running different scenarios, which 

in turn increases the relevancy of output analysis among different scenarios in sensitivity 

analysis. Thus, it diminishes the need for a large number of replications to reduce the standard 
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deviation of outcomes, which results in more precise estimates. More details on using this 

technique can be found in Chapter 6.  

 A Simple Monte Carlo Example in Dairy Cows 2.4.3.

A simple static Monte Carlo simulation of dairy cows demonstrates the process. For this 

purpose the methodological steps as illustrated in Figure 2.2 will be followed. The objective is to 

find the distribution of annual income over feed costs (IOFC) of the cows in a typical herd with 

the following assumptions. Annual IOFC is defined as (milk yield × milk price) ï (feed cost). To 

simplify the example it is further assumed that cows are classified into 5 milk production classes 

(Figure 2.3) regardless of their lactation number. Then, the stochastic inputs are the milk price, 

milk yield, and the feed costs. 

The next step is to analyze relevant data from the past on the parameters in the system to find 

the input distribution of our uncertain variables. For example, in the case of milk price the 

historical data from 2013 and 2014 are used to find the distribution of average milk price. 

Subsequently, different distributions were tried to find the best distribution that can describe the 

historical distribution of the milk price. Figure 2.8 shows the distribution of historical milk price 

with the best fitted distribution using Kolmogorov-Smirnov goodness-of-fit test (beta 

distribution; square error = 0.0223; p-value>0.15; the null hypothesis that milk prices are 

distributed based on beta distribution cannot be rejected). 
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Figure 2.8. Distribution of historical milk price (histogram) and the best fitted distribution on the 

data (beta distribution expression = 19+7×beta (0.589, 0.825)).  

 

For annual milk yield two scenarios of 5 discrete milk classes as described in Figure 2.7 and 

continuous milk class from N~(10,000, 1,300) is compared. Finally, the annual feed cost ($/cow 

per year) is assumed to follow N~(850,30). 

The written script in Python (Appendix 1 Script 2) was verified to make sure the program 

performs as expected. Next, the simulation was run for 1,000 herds of each with 1,000 cows on 

separate streams of random numbers. This is a hypothetical example and therefore a validation of 

result is ignored. The cumulative distribution function of IOFC is shown in Figure 2.9. The IOFC 

of 1,000 simulated cows from one herd under two scenarios of annual milk production 

(continuous normal vs. 5 discrete milk classes) is displayed in panel A, Figure 2.9. The CDF 

curve with 5 discrete classes clearly replicates the CDF in Figure 2.7 based on the available 

discrete probabilities, which demonstrate the Monte Carlo sampling technique (Inverse-

transform technique). 
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Figure 2.9. Panel A: cumulative distribution function from 1,000 replications of the cows in one 

herd under two scenarios of annual milk production (5 discrete milk production classes from 

Table 2.2 vs. continuous milk production from N~(10,000,1,300)). Panel B: cumulative 

distribution function obtained from averaging 1,000 replications of cows over 1,000 herds under 

three scenarios (milk price distributed according to beta distribution in Figure 2.8 vs. uniform 

distribution of milk price U~[19,26] vs. beta distributed milk price when the milk production 

followed normal distribution described above). 

 

The CDF of the IOFC obtained by averaging over 1,000 cows from 1,000 herds running with 

three scenarios (comparison between different distribution of milk price (beta vs. uniform) and 

beta distributed milk price with annual normally distributed milk production) is illustrated in 

Figure 2.9 panel B. It is clear that when using the uniform distribution for milk price the CDF is 

linear and it gives the same weight to different milk prices. However, the weights of milk prices 

are captured when using the beta distribution. The simulation runs under both 5 milk production 
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classes and normal distribution results almost in the same CDF and statistics. The different milk 

price distribution approaches have an implication in potential decision-making. The average 

IOFC (±1sd) under beta distribution was 1,339.8 (±220) and under uniform distribution was 

1,393 (±198). Using a uniform distribution resulted in an overestimation of the overall IOFC. 

This is a simple hypothetical example, but it shows the power of the Monte Carlo simulation in 

sensitivity analysis and in understanding the system under different conditions.  

 Monte Carlo Simulation in Dairy Herd Industry 2.4.4.

Monte Carlo simulation has been used by many researchers (more than 100 studies) in almost 

every aspect of the dairy herd management to better understand the dairy system, study different 

management areas of the dairy system (e.g., reproduction, physiology, and genetics), and to 

explore new emerging technologies and their potential benefits and costs in the dairy industry. 

Another reason of adapting this technique among dairy researchers from different fields, could 

be attributed to the accessibility of user-friendly software packages (@Risk in Microsoft Excel or 

prebuilt models from other researchers DairyORACLE (Marsh, 1986) or SimHerd (Sorensen et 

al., 1992)) to implement the model in less time and with no or low cost.  

The number of studies that have used this modeling technique is staggering and here is 

classified to better understand their underlying modeling techniques and applications. Models 

could be dynamic or static. Also, Monte Carlo models in dairy could be classified by the level of 

simulation in the hierarchy (Table 2.1); cow level simulation vs. herd level simulation. Another 

classification could be based on the software used for modeling. Pre-built software packages or 

standalone applications coded by the modeler. 
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A dynamic, stochastic simulation model developed by Oltenacu et al. (1980) had a focus on 

reproduction in dairy herds, and was one of the earliest complete herd stochastic models. Later, 

many dynamic, stochastic simulation models were used to explore the consequences of 

biological and management changes on the output of dairy systems (Kuipers, 1982; Congleton et 

al., 1984; Marsh, 1986; Dijkhuizen et al., 1986; Sorensen et al., 1992; Allore et al., 1998b). Most 

of these early models created a computer model that was subsequently used by the same or other 

researchers to study different managerial problems on dairy herds. For instance, DairyORACLE 

(Marsh, 1986), and SimHerd (Sorensen et al., 1992) are among the models used in different 

studies as the framework.  

A brief description of the SimHerd, the most complete herd simulation framework extensively 

used in the literature, is provided. SimHerd is a dynamic, stochastic Monte Carlo simulation 

framework with weekly time steps developed to imitate a dairy herd (adults and young stock) to 

investigate the effect of different management strategies (Sorensen et al., 1992). In this model, 9 

state variables were used to describe an individual animal in a herd (age, lactation stage, lactation 

number, estrus status, pregnancy status, decision for culling, milk production potential, milk 

production, and live weight). All the discrete events at a cow level were triggered stochastically 

and governed the herd structure and dynamics. These events included heat detection, pregnancy, 

fetal death, sex and viabilities of the calf, involuntary culling, and death.  Moreover, the herd 

structure and the production level were controlled by a set of decision variables, which defined a 

certain production system or a specific management strategy (Sorensen et al., 1992). Since the 

first version of the SimHerd I (Sorensen et al., 1992) different versions have been released 

through different research studies. SimHerd II (Ostergaard et al., 2000) added the feeding-health-

production complex (potential effect of metabolic and reproductive diseases on the milk 
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production and feed intake) to the SimHerd I framework. SimHerd III (Østergaard et al., 2003) 

added the risk factors and effects of milk fever to the previous version. The framework was 

moreover extended by addition of somatic cell count and mastitis to create the SimHerd IV 

(Østergaard et al., 2005). SimHerd V was developed by separating the genetic and permanent 

environment of milk yield potential and setting the calf milk yield potential to its parentsô 

average (Ettema et al., 2011). 

Monte Carlo simulation has been used to study different aspects of dairy herd systems. Some 

instances (a subset) of the models in different areas of dairy herd management follows: Different 

disease controls and its associated decisions and costs (Allore et al., 1998b; Ostergaard et al., 

2000; Groenendaal et al., 2002; Kudahl et al., 2007; Steeneveld et al., 2007; Nielsen et al., 2011; 

Foddai et al., 2014), culling decisions (Marsh et al., 1987; Dijkhuizen and Stelwagen, 1988; 

Kristensen and Thysen, 1991), evaluating economic traits, choosing selection strategies, and 

genomic selection (Nielsen et al., 2004; Kulak et al., 2004; de Roos et al., 2011; Ettema et al., 

2011; Lillehammer et al., 2011; Axelsson et al., 2013; Hjortø et al., 2015), new dairy technology 

analysis (Hyde and Engel, 2002; Bewley, 2008), analysis of different parameters related to 

reproductive performance (Oltenacu et al., 1980; Montaldo, 1996; Plaizier et al., 1997, 1998; 

Allore and Erb, 2000; Olynk and Wolf, 2008; Inchaisri et al., 2010; Brun-Lafleur et al., 2013; 

Galvão et al., 2013; Rutten et al., 2014), and nutrition and feeding systems (Pecsok et al., 1992; 

Williams and Oltenacu, 1992; St-Pierre and Thraen, 1999). The models listed above are all 

stochastic Monte Carlo models, however; some of them are static (no time inclusion) and others 

dynamic (time as a variable in the model). A brief list of studies with some of their 

characteristics is summarized in Table 2.3. 
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Table 2.3. Brief modeling characteristics and application of subset of stochastic simulation 

studies in dairy industry (chronologically ordered).  

Study  
Modeling 

characteristics
1
  

Used software Application 

Oltenacu et al. 

(1980) 

Dynamic, herd, 

day 
GASP

2
 Reproductive process 

Kuipers (1982) 
Dynamic, herd, 

month 
Coded

?
 

Comparing selection and 

culling decisions 

Bailie (1982) 
Dynamic, herd, 

month 
Coded

?
 

Breeding management 

efficiency 

Congleton et al. 

(1984) 

Dynamic, herd, 

year 
GASP

2
 

Determining the profitability 

of extending cow herd life 

Marsh (1986) 
Dynamic, herd, 

year 

Coded-C 

(Developed 

DairyORACLE) 

Evaluation of managerial 

changes (reproductive, health) 

Dijkhuizen et al. 

(1986) 

Dynamic, herd, 

20 days 
Coded-Fortran 77 

Economic evaluation of 

management decision with 

respect to production, 

reproduction, and culling,  

Marsh et al. (1987) 
Dynamic, herd, 

year 
DairyORACLE

3
 

Economic evaluation of 4 

culling policies  

Dijkhuizen and 

Stelwagen (1988) 

Dynamic, herd, 

20 days 
Coded-Fortran 77 

Economic evaluation of 4 

culling policies 

Skidmore (1990) 
Dynamic, herd, 

year 
Coded-Fortran 4.1 

Evaluation of managerial 

changes ( reproductive, 

production) 

Sorensen et al. 

(1992) 

Dynamic, herd, 

week 

Coded-Turbo 

Pascal (developed 

SimHerd I) 

Evaluation of different feeding 

regimes, and different culling 

and reproductive strategies 

Schrooten and Van 

Arendonk (1992) 
Static, cow ? 

Genetic improvement with 

Multiple Ovulation and 

Embryo Transfer (MOET) 

Sørensen et al. 

(1993) 

Dynamic, herd, 

week 
SimHerd I 

Effect of different dry period 

lengths 

Ostergaard et al. 

(1996) 

Dynamic, herd, 

week 
SimHerd I 

Estimation of technical and 

economic effects of using one 

vs. multiple TMR feeding 

groups 

Plaizier et al. (1997) 
Dynamic, herd, 

week 
SimHerd I 

Relationship between 

measures of reproductive 

performance and net revenue 

Allore et al. (1998b) 

Dynamic, herd, 

variable based on 

events 

Coded-C/C++ 

(developed 

SIMMAST) 

Effect of mastitis on 

composition of bulk tank milk 
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Study  
Modeling 

characteristics
1
  

Used software Application 

St-Pierre and 

Thraen (1999) 
Static, cow ? 

Estimating optimum allocation 

of NEL and CP 

Allore and Erb 

(2000) 

Dynamic, herd, 

day 

SIMMAST+SIMH

EALTH 

(developed 

DairySim) 

Evaluating the effect of 

extending VWP by 100 days 

on disorders and health issues 

(e.g., mastitis, ketosis, milk 

fever, dystocia, retained 

placenta)  

Bargh (2000) 
Dynamic, cow, 

day 
ASCL

4
 

Predicting the nutritional 

effects on milk fatty acid 

profile  

Ostergaard et al. 

(2000) 

Dynamic, herd, 

week 

Developed 

SimHerd II 

Evaluation of managerial 

changes in feeding, health and 

production 

De Vries (2001) 
Dynamic, herd, 

day 

Coded-C++ 

(developed 

DASIMO) 

Studying statistical process 

control charts in simulated 

dairy herds 

Groenendaal et al. 

(2002) 

Dynamic, herd, 6 

months 

VBA + Microsoft 

Excel 

Evaluation of economic and 

epidemiological impacts of 

different control strategies for 

Johneôs disease 

Hyde and Engel 

(2002) 
Static, cow 

@Risk add-in 

Microsoft Excel 

Calculating break-even value 

for robotic milking systems 

Østergaard et al. 

(2003) 

Dynamic, herd, 

week 

Developed 

SimHerd III 

Evaluating the long term effect 

of control strategies against 

milk fever 

Sørensen and 

Østergaard (2003) 

Dynamic, herd, 

week 

Developed 

SimHerd III 

Analyzing the economic 

consequences of postponed 

first insemination with 

different reproductive 

performance 

Nielsen et al. (2004) 
Dynamic, herd, 

week 
SimHerd III 

Driving economic values for 

different traits 

Østergaard et al. 

(2005) 

Dynamic, herd, 

week 

Developed 

SimHerd IV 

Evaluating different pathogen-

specific mastitis control 

strategies 

Ettema and 

Østergaard (2006) 

Dynamic, herd, 

week 
SimHerd III 

Evaluating prevention and 

control strategies of clinical 

lameness with its economic 

impacts 

Steeneveld et al. 

(2007) 
Static, cow 

@Risk add-in 

Microsoft Excel 

Economic effects of treating 

chronic subclinical mastitis 
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Study  
Modeling 

characteristics
1
  

Used software Application 

Bewley (2008) Static, cow 
@Risk add-in 

Microsoft Excel 

Examining technical and 

economic feasibility of 

automated body condition 

scoring 

Olynk and Wolf 

(2009) 
Static, cow 

@Risk add-in 

Microsoft Excel 

Economic and risk analysis of 

artificial insemination with 

Ovsynch and Cosynch 

protocols  

Bruijnis et al. 

(2010) 

Dynamic, herd, 

month 

@Risk add-in 

Microsoft Excel 

Economic effects of foot 

disorders in dairy cattle 

Inchaisri et al. 

(2010) 

Dynamic, herd, 

week 

@Risk add-in 

Microsoft Excel 

Evaluating economic 

consequences of reproductive 

performance scenarios 

Inchaisri et al. 

(2011) 

Dynamic, herd, 

week 

@Risk add-in 

Microsoft Excel 

Analysis of economically 

optimized voluntary waiting 

period  

Sørensen et al. 

(2011) 

Dynamic, Cow, 

week 
ADAM

5
 

Effect of using sexed semen on 

genetic gain in commercial 

herds 

de Roos et al. 

(2011) 
Static, cow ? 

Effect of genomic selection on 

genetic improvement and 

inbreeding  

Ettema et al. (2011) 
Dynamic, herd, 

week 

Developed 

SimHerd V 

Identifying the importance of 

genetic progress in milk yield 

when evaluating different 

reproductive strategies 

Weigel et al. (2012) Static, cow ? 

Quantifying the genetic gains 

of using genomic testing on 

replacement heifers  

Galvão et al. (2013) 
Dynamic, herd, 

day 
Netlogo

6
 

Comparing economic outcome 

of different reproductive 

programs  

Brun-Lafleur et al. 

(2013) 

Dynamic, herd, 

day 
? 

Reproductive process sensitive 

to milk yield and body 

condition score 

Rutten et al. (2014) 
Dynamic, cow, 

week 

@Risk add-in 

Microsoft Excel 

Evaluating the return on 

investment of activity monitors 

for better estrous detection 

Yin et al. (2014) Static, cow QMSim
7
 

Comparing genetic gain and 

inbreeding coefficients of dairy 

cattle using natural service 

bulls 
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Study  
Modeling 

characteristics
1
  

Used software Application 

Hjortø et al. (2015) 
Dynamic, herd, 

week 

SimHerd IV and 

ADAM  

Evaluating genomic testingôs 

interaction with reproductive 

surplus 
1 
Model characteristics including time dependency (dynamic vs. static), simulation level (herd vs. 

cow), and time steps in dynamic simulations   

2
 General Activity Simulation Program is specialized purpose simulation language  

3
 With some modifications from the original DairyORACLE (Marsh, 1986) 

4
 Advanced Continuous Simulation Language used for modeling and evaluating performance of 

time-dependent continuous systems 

5
 ADAM is a computer stochastic simulation package written in FORTRAN 95 for modeling 

selective breeding schemes (http://adam.agrsci.dk/)  

6
 A multi-agent programmable modeling environment (https://ccl.northwestern.edu/netlogo/)  

7
 QTL and Marker simulator for simulating large scale genotype data 

(http://www.aps.uoguelph.ca/~msargol/qmsim/)
  

?
 The programming language is not known 

 

All of these models follow the building blocks of the Monte Carlo simulation as described in 

Figure 2.6. However, what makes the structure of these models different among studies is the 

domain-specific knowledge representation, which models the sample paths or realization (step 3 

in Figure 2.6). Common state variables to describe a cow in these studies were traits related to 

production (e.g., milk production potential, %fat, and %protein), reproduction (e.g., gestation 

length, days dry, and days open), nutrition (e.g. DMI, nutrient requirements), and age related 

traits (e.g., age, lactation number, DIM). However, some studies had extra state variables to 

describe exactly the problem to be solved by the model. For example, a model developed by 

Allore et al. (1998) used extra state variables to describe mastitis cases related to different 

pathogens and the treatments that the cow received. Furthermore, in dynamic models a cow 

proceeds through time steps (e.g., monthly, weekly, or daily), which would trigger different 

events in the model. In turn, these events update cowôs characteristics. Events used in the models 

http://adam.agrsci.dk/
https://ccl.northwestern.edu/netlogo/
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are also similar and relates to mainly reproductive cycles of a dairy cow. These events include: 

calving, ovulation, estrus detection, service, conception, and abortion (De Vries, 2001). Other 

events relate to the involuntary culling, voluntary culling, and mortality, which alongside the 

reproductive events shape the herd structure. Another factor in these simulations is input prices 

and costs. These factors vary dramatically among studies, and usually are set to some default 

values instead of drawing them randomly. Keeping some factors deterministic is a usual act in 

stochastic models, to focus on important aspects of the system to be studied without 

unnecessarily cluttering the results. 

In the following sections some of the studies with different application in the dairy industry 

are reviewed. The emphasis is on dynamic stochastic models that were used as a reference in 

Chapter 6 of this thesis.   

 Health and Disease Control 2.4.4.1.

Many studies have used simulations to obtain extra knowledge about specific treatment or 

control of dairy cow diseases. Mastitis has been the subject of many studies (Allore et al., 1998a; 

Østergaard et al., 2005; Steeneveld et al., 2011; Hagnestam-Nielsen and Ostergaard, 2009), 

which are used as an example of disease models. A stochastic computer model named 

SIMMAST was developed, validated (Allore et al., 1998b), and subsequently used to evaluate 

different strategies to control mastitis (Allore et al., 1998a). The SIMMAST is a daily step 

dynamic, stochastic simulation model written in the C language to simulate intramammary 

infections caused by different strains of pathogens and strategies to lower the somatic cell count 

of the bulk tank (Allore et al., 1998b; a). The SIMMAST was run for 2 years under 7 possible 

combinations of mastitis preventive strategies, lactation therapy, and dry cow antibiotic therapy 
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(Allore et al., 1998a). The results showed that no single factor strategy was dominant and the 

best results were achieved using a combination of scenarios (Allore et al., 1998a). Few years 

later in a similar study Østergaard et al. (2005) used the SimHerd IV with weekly steps to run an 

extensive sensitivity analysis with more pathogens and mastitis types than Allore et al. (1998a) 

study. Because the model was implemented on top of SimHerd framework, it was able to 

account for the interaction between different management strategies (e.g., reproduction, culling) 

and mastitis control strategies at the herd level which was not possible in previous models 

(Østergaard et al., 2005). This model was further used to examine the economic impact of 

reduction in the incidence of clinical mastitis in dairy herds (Hagnestam-Nielsen and Ostergaard, 

2009). Economic impacts of treatment chronic subclinical mastitis caused by one pathogen were 

estimated in a static stochastic simulation using Microsoft Excel @Risk add-in software 

(Steeneveld et al., 2007). Comparing to previous models, this model was much simpler, less 

detailed, and at the cow level (as opposed to herd level in the previous study). 

Other diseases have also been studied in the literature such as Johneôs disease control 

(Groenendaal et al., 2002), milk fever (Østergaard et al., 2003), bovine viral-diarrhea (Viet et al., 

2004), and foot disorders (Bruijnis et al., 2010).     

 Culling Decisions 2.4.4.2.

Culling decision has a great impact on farmôs profitability. Dynamic programming (explained 

in section 2.3) could be used to find the optimal economical replacement policies in herds. 

However, to be able to compare different practical culling policies in dairy farm stochastic 

simulations have been used (Marsh et al., 1987; Dijkhuizen and Stelwagen, 1988). Both models 

used 4 different culling strategies to cover a variety of insemination and culling policies that 
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were practical. Two policies were based on a single predefined cut-off   point of service (165 and 

250 days after calving), and the other two more restrictive options varied according to the milk 

production level and stage of lactation (different combination of milk production level and days 

after calving (Marsh et al., 1987)). Similar policies with different cut-off points and milk 

production level and stage of lactation, including some optimal policies found in a DP model 

were used in another study by Dijkhuizen and Stelwagen (1988). For the comparisons Marsh et 

al. (1987) used a previously developed dynamic, stochastic simulation model,  DairyORACLE 

(Marsh, 1986). The results showed that for maximum profit the culling policy should not be too 

restrictive. Although, these strategies decreased the calving interval, they increased the 

replacement rate and therefore had a negative impact on the profitability. The study suggested 

that, in the US, cows should be bred until 250 days after calving as long as the low producing 

cows were culled for low production irrespective of reproductive status (Marsh et al., 1987). 

Similar dynamic, stochastic simulation study was conducted in the Netherland with similar 4 

culling policies as above (Dijkhuizen and Stelwagen, 1988). They concluded that at <50% heat 

detection and < 40% conception rate, there is no value of culling the cows based on the 

combined policy based on poor productive and reproductive performance. However, they found 

that in better performing herds making culling policies based on a more restricted measure of 

production and reproduction adds to the profitability of a dairy herd (Dijkhuizen and Stelwagen, 

1988). 

The Monte Carlo stochastic simulation approach has been used to calculate the total expected 

net returns during the next year and that value was used for ranking animals. Kristensen and 

Thysen (1991) compared the decisions being made by DP and stochastic simulation and reported 

insignificant difference between the two models. 
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 Animal Breeding and Genetics  2.4.4.3.

Studies in animal breeding and genetics, using stochastic simulation, can be divided into 2 

types: 1) evaluating the economic value of important traits 2) evaluating the value of different 

selection strategies. 

Nielsen et al. (2004) and Kulak et al. (2004) used the SimHerd dynamic simulation model to 

evaluate the economic values of different production and non-production traits under different 

farm scenarios. The scenarios were different based on the herd size, level of the trait, prices, and 

presence of milk quota. Energy corrected milk, conception rate, mastitis, body weight, and 

involuntary culling are examples of the traits included in both studies. The evaluated economic 

value for all the traits related to diseases was negative, and the absolute value depended on the 

severity of the cases. 

Since the availability of the genomics selection many different studies have explored the ways 

that this technology could potentially improve genetic gain (due to selecting accurately young 

cows that lead to shorter generation interval) and its effect on inbreeding compared to progeny 

testing in dairy cows (de Roos et al., 2011). For this purpose a closed nucleus herd with an 

annual birth number of 1,000 males and females were simulated under two selection criteria of 

progeny test and genomic selection (de Roos et al., 2011). Running static, stochastic simulation 

the study found that genomic selection would increase the rate of genetic gain (+30%/ yr 

compared to progeny test) and decrease the rate of inbreeding per generation (de Roos et al., 

2011). Similar results regarding the better genetic gain in genomic selection at lower rate of 

inbreeding was found in another study using static, stochastic Monte Carlo simulation 

(Lillehammer et al., 2011).These simulation studies showed the implications and potential of 
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using genomic selection in improving genetic gain of testing sires and dams in nucleus herds. 

Other researchers tried to evaluate the use the genomic testing technology in commercial dairy 

farms for applying genotyping to test replacement animals for selection and culling decisions 

(Weigel et al., 2012; De Vries and Salfer, 2013). The advantage of genomic testing is the ability 

to accurately identify superior females and males after birth, which consequently helps the 

farmers make better informed breeding and culling decisions based on the objective of the herd 

(De Vries and Salfer, 2013). Both studies used static Monte Carlo simulation model to test the 

percentage of animals selected and the availability of prior information about the animals. Both 

studies found that the gain from genomic testing of heifers exceeded the cost of test (cost 

effective), especially when the pedigree and phenotypic information were available for the young 

animals and small fraction of the young population needed to be tested (Weigel et al., 2012; De 

Vries and Salfer, 2013).   

 Dairy Technology Analysis 2.4.4.4.

New technology is being introduced to the dairy industry on a regular basis. These 

technologies could be in genetics (discussed above), reproduction (discussed later), and 

production. Simulation has always played an important role to explore the cost-benefit and 

feasibility of a new technology with minimal cost. For example, Hyde and Engel (2002) 

estimated the breakeven value of a robotic milking system and Bewley (2008) examined the 

economic feasibility of automated body condition scoring in dairy cattle using static Monte Carlo 

simulation. Both models used @Risk add-in for Microsoft Excel to build the model. Both models 

included stochasticity in economic variables and some production characteristics of herd with 

different sizes to obtain a good estimate of the economic value of using these new techniques. 
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 Reproductive Performance 2.4.4.5.

As it was discussed, the first important dynamic, stochastic simulation model was modeling 

the reproduction in dairy cows (Oltenacu et al., 1980). The model used next-event scheduling 

method to model four reproductive related events on dairy herds (i.e., parturition, ovulation, 

embryonic loss and replacement). This method schedules all the events that could happen to a 

cow at day 0 of the simulation and update attributes of the cows whenever an event occurred. For 

example, after parturition cows should start the ovulation, which followed a lognormal 

distribution (Oltenacu et al., 1980), given the cow survived the early lactation risk of culling and 

diseases. This method and the parameters and distributions used in this study was later used by 

other researchers to simulate dairy herds to study the economic impact of factors related to the 

reproductive performance on dairy herds (Marsh et al., 1987; Kinsel, 1998; De Vries, 2001). 

Detail of the next-event scheduling approach will be discussed in Chapter 6. 

Many models have been built to study different aspects of reproductive performance and its 

effect on the farmôs profitability. For example, some models have focused on the important 

factors that have a great impact on overall reproductive performance (e.g., conception rate, estrus 

detection rate; (Inchaisri et al., 2010)), others on evaluating the economic value of different 

reproductive protocols and programs (Olynk and Wolf, 2009; Galvão et al., 2013; Rutten et al., 

2014), and few studies on the potential implications of dry periods or determining the optimum 

length of voluntary waiting period (Halasa et al., 2010; Inchaisri et al., 2011).   

Inchaisri et al. (2010) analyzed economic value of 3 different reproductive performance 

scenarios (good, average, and poor), and explored the impacts of reproductive factors (e.g., 

ovulation rate, estrus detection rate, conception rate, incidence rate of postpartum disorders, 
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voluntary waiting period) on the final economic value. The scenarios were built by changing 

important factors. For example, the conception rate of a good, average, and poor scenario was 

0.7, 0.5, and 0.3, respectively. Using static Monte Carlo simulation built in @Risk Excel add-in 

they showed that the economic loss due to poor reproductive performance could translate to ú231 

total loss compared to a good performance. Important economic factors on the reproductive 

efficiency were involuntary culling cost and revenue from milk production. Variation of 

conception rate, estrus detection rate, and voluntary waiting period had a large impact on the 

overall economic value of a given scenario (Inchaisri et al., 2010). 

Many different reproductive management programs (e.g., Ovsynch, Cosynch, Double-

Ovsynch) have been developed and introduced to the farmers over the years. Given the large 

numbers of such programs, economic assessments of these programs are beneficial to help 

decision makers choose economically optimal programs (Olynk and Wolf, 2009). In a study by 

Olynk and Wolf (2009), herds under Ovsynch and Cosynch reproductive managements were 

simulated using @Risk Excel add-in. Then, using the stochastic dominance methods the best 

programs were identified. The study showed that both Ovsynch and Cosynch were preferred over 

heat detection and farmers, and managers would prefer Ovsynch to Cosynch, regardless of the 

attitude towards risk  (Olynk and Wolf, 2009). In another study using dynamic, stochastic Monte 

Carlo simulation Galvão et al. (2013) did a comprehensive study on comparing 100% timed 

artificial insemination, heat detection, and combination of synchronization and heat detection. In 

this study Presynch-Ovsynch was used for the first insemination and Ovsynch for second and 

subsequent services. The results were evaluated under 2 levels of important factors on the 

reproductive performance of herd such as estrus detection rate and its accuracy, compliance of 

the reproductive protocol, and milk price.  In this study a daily model simulated 1,000 cows 
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using Netlogo software and ran until steady-state. The results showed that regardless of the 

levels the combined program with 60% estrus detection rate always outperformed the 100% 

timed artificial insemination protocol (Galvão et al., 2013). Further discussion of the actual 

economic value of different reproductive protocols can be found in Chapter 5.  

Heat detection is one of the factors that affect reproductive performance. The average 

efficiency of visual estrus detection varies between 40 to 55% among studies (Rutten et al., 

2014). Activity monitors are automated estrus detection systems that try to improve this 

efficiency by using sensors and the behavior change in dairy cattle. These systems are expensive 

and economic feasibility of such systems seems appropriate for large upfront investments. Rutten 

et al. (2014) used dynamic, stochastic simulation to explore the feasibility of such investment. In 

that study, a 130-cow herd was simulated under two scenarios of visual heat detection (50% rate) 

and activity meters (80% sensitivity; 95% specificity). A 11% internal rate of return for investing 

in activity meters were found in the study and the driving factor was the visual estrus detection 

rate (Rutten et al., 2014). 

 Nutrition and Grouping Strategies 2.4.4.6.

Considering that the field trials in nutrition studies are the norm, the number of simulation 

models in nutrition is much smaller than other fields. For instance, simulation was used to 

compare different grouping strategies (Williams and Oltenacu, 1992). In that study a dynamic 

simulation model was used to compare 7 different strategies to group the cows for feeding and its 

impact on the income over feed costs (IOFC ). These strategies were: 1) energy and protein 

requirements per kg of dry matter intake, 2) required energy and protein per kg of NDF, 3) DIM, 

4) test day milk, 5) test day fat corrected milk, 6) kilograms of fat corrected milk per kg of 
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 (dairy merit), and 7) dairy merit weighted by DIM. Each of these strategies was tested 

under 2 or 3 feeding groups after running the model for 10 years.  The study showed that in 

terms of annual IOFC the most effective strategies were  those that grouped the cows based on 

the nutrient concentrations in terms of DMI or NDF (strategies 1 and 2; often called cluster 

methods (McGilliard et al., 1983)), and the least effective was grouping the cows based on the 

test day milk (Williams and Oltenacu, 1992). The effectiveness of the cluster method (strategy 1)  

was also proved in a static simulation study by St-Pierre and Thraen (1999). In that study, the 

authors used static Monte Carlo simulation to simulate populations of cows fed different NEL 

and CP concentrations to find the optimum allocation of NEL and CP. The results suggested that 

the optimum allocation depended on the number of feeding groups and the herds doing just one 

group fed the cows to higher concentration of NEL and CP, which resulted in nutrient wastage in 

manure (St-Pierre and Thraen, 1999). Chapter 6 of this thesis describes the development and 

application of a dynamic, stochastic Monte Carlo simulation to estimate an economic advantage 

of having multiple feeding groups instead of feeding all the cows one TMR. Further discussion 

about the potential gain in IOFC obtained by having more than one feeding group is provided in 

Chapter 6. 
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 Decision Support Systems (DSS) 2.5.

 Introduction to DSS 2.5.1.

In previous sections different modeling techniques that could assist researchers to develop a 

rather precise model of dairy herd systems were introduced. Results from these models under 

different conditions could be helpful in understanding dairy herd systems. However, the 

modeling itself would not be of any assistance to the end-users (e.g., farmers, managers, 

consultants) unless the results would affect the decision made on dairy herds under their specific 

conditions. Decision making is a complex multi-step process which starts by gathering 

intelligence (gathered information from the system to find problems and opportunities), 

continues by designing valid alternative choices, and finishes by making a choice from a pool of 

alternatives (Wierzbicki and Lewandowski, 1989; Oz, 1998). Decision support systems (DSS) 

are the links between the underlying analytical models and the decision making process to assist 

decision makers to make informed decisions. 

 DSS Definition  2.5.2.

Decision support systems are a subclass of computer based information systems that support 

technological and managerial decision making by providing useful information regarding ill-

structured or semi-structured problems (Sharma et al., 2011). Structured problems are problems 

in which their answers are reachable by following sequential sets of steps, and the answer for a 

given set of parameters is always the same. Problems in mathematics and physics are usually 

structured (e.g., finding a square root, speed of a falling object; (Stair and Reynolds, 1999)). Ill -

structured and semi-structured lacks these key properties.  
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Plotting all information systems on a continuum (Figure 2.10) displays on one side those 

systems that just can be used as a database and for report generation (answers to structured 

problems) and on the other side all expert systems that make decisions themselves and learn over 

time (Sauter, 2010). On this scale DSS would be placed in the mid part of the continuum with a 

goal to provide decision support for ever-changing problems in the organization (generally 

business) that often have more than one right answer (unstructured problems). It should be 

noticed that the DSS main function is to support decisions made by humans (managers and 

consultants) not to replace them. 

 

 

Figure 2.10. Continuum of information systems products (adapted from (Sauter, 2010)) 

 

Overall, DSS can be defined as interactive computer programs that use analytical methods, 

such as regression, simulation, optimization, and decision analysis algorithms, to assist decision 

makers to analyze the impact of different decisions on the system and select appropriate option 

based on the gained information (Zwass, 1997; Agrahari and Tripathi, 2012).  
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 DSS Components 2.5.3.

Every DSS has three fundamental components as follow (Oz, 1998; Stair and Reynolds, 

1999): 

1. The database (or knowledge base) 

2. The model (based on the context and the goal) 

3. The user interface (or dialog management module) 

The first module is a database that allows decision makers to conduct the gathering 

intelligence phase of the decision making process. This module could either be integrated with a 

database management system or it could obtain the data manually. The model module is based 

on the overall goal and design phase of the decision making process and tries to turn the data into 

information for decision makers. All the models described in previous sections have the potential 

to be used in this module of a DSS. The final component is the user interface and is the part that 

provides the user the ability to change the parameters and observe the results in a user-friendly 

environment (Oz, 1998; Stair and Reynolds, 1999).  

Although DSS have been classified based on different criteria (Zwass, 1997; Stair and 

Reynolds, 1999; Agrahari and Tripathi, 2012), the Wierzbicki and Lewandowski (1989) 

classification, based on practical development of these systems in applications and research, 

seems the most appropriate for dairy farming applications: 

1. Simple tools for managerial decision support (these can be used as building blocks of 

other main DSS). Examples of these tools are simple access databases and spreadsheet 

programs. 
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2. DSS based on logical models and logical inferences. The main function of these systems 

is to help and identify logical patterns in decision situations. These systems typically 

include logical programming, expert systems and tools in artificial intelligence. 

3. DSS based on analytical models, multi-objective optimization and choice. These models 

try to find the best choice among alternatives. These systems include a computerized 

model of the system using simulation with (or without) complex optimization models to 

evaluate different alternatives. 

 Development Process of DSS 2.5.4.

Developing a complete functional system that does everything from scratch is hardly feasible. 

Adding depth to the system functionality is the long-term objective and establishing the scope of 

the system should be the priority in the DSS development process (Bennett, 1983). Thus, the 

system development has a circular life cycle that starts and ends with planning as it is depicted in 

Figure 2.11. Planning refers to identifying and selecting the system for development, assessing 

project feasibility, and creating a development plan. The next step is to analyze business 

requirements and creating a flow and process diagrams of the decision problem. Design phase 

works on selecting the model based on understanding the business requirements. The design 

phase will follow by an implementation which is the development of the model in the computer. 

Finally, the support or feedback starts which could be used to fine-tune and revise the 

assumptions or modeling part. Thus, system development follows an incremental, adaptive, 

iterative design process which helps the system evolve over time (Bennett, 1983; Oz, 1998; Stair 

and Reynolds, 1999). The same development cycle can be found in management, which is called 

management cycle (Kristensen et al., 2006). 
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Figure 2.11. The system development life cycle (adapted from (Oz, 1998)) 

 

 DSS in Dairy Herd Management 2.5.5.

Over the years the acceptance of DSS in dairy herd systems has been on the rise and in 

todayôs uncertain and risky market using such tools seems to be more appealing than ever. One 

of the most essential parts of todayôs dairy farms is the database management system, to 

ñaccuratelyò record all the events on a farm (Kristensen et al., 2006). However, as it was 

discussed and illustrated (Figure 2.10), management information systems are reporting tools with 

usually no decision support capability. To be valuable to farmers, data needs to be converted to 

information required in the context of a problem at hand. DSS are the means for creating 

valuable information from large amounts of data that otherwise would not be that informative. 

Currently, one could find a decision support tool to assist them in getting information from 

different aspects of dairy herd management. For example, Cabrera, (2012a) provided a suite of 

more than 30 DSS with a goal of assisting dairy farmers and consultants in their complex daily 

decision making, available at (http://WWW.DairyMGT.info). Another great source, but more 

limited in terms of a range of tools, for DSS is developed by Galligan (Professor of Animal 

http://www.dairymgt.info/
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Health Economics, University of Pennsylvania School of Veterinary Medicine; 

http://dgalligan.com/). 

All the modeling techniques that have been described in this thesis have the capability to 

become DSS. However, except few research studies in the literature, many of the described 

models stayed at the research part of modeling and did not evolve into a user-friendly DSS. The 

following section provides some DSS descriptions that originated from scientific literature and 

are applied to dairy herd management. 

 Nutrition Management and Feeding Systems 2.5.6.

Feed cost being one of the major variable costs on dairy farms makes this group of DSS 

valuable tools to dairy farmers. In addition, environmental concerns regarding dairy production 

systems excretion (e.g., C, N, P) into the environment and potential government policies in the 

future drive decision makers to appropriate tools to better manage their dairy herd with respect to 

feed the cows more precisely.  

There are a number of tools available for managing feeding costs that could evaluate the 

IOFC for a specific lactation, feed prices, and is responsive to different feeding strategies 

throughout the lactation (Cabrera, 2012a). The other example from this category is the ñFeedVal 

v6.0ò for ranking the feed costs available in the market based on different nutrients of the given 

feed. For the issue of environmental stewardship a whole farm simulation and optimization 

model developed by Cabrera et al. (2006), which could be used to balance between the nutrient 

concentration in the diet and the requirements with respect to the potential N leaching. The 

model translated to a DSS (Dynamic Dairy Farm Model) is also available on-line. There number 

http://dgalligan.com/
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of other tools targeted at the nutrition and risk management of feed which are also available on-

line (Cabrera, 2012a). 

 Reproductive Management and Culling Decisions 2.5.7.

In terms of DSS support and tools optimal culling, insemination decisions, and reproductive 

management are major aspects of a dairy farm that have gained extra attention. This could be due 

to their high impact on the farmôs profitability (van Arendonk, 1985b). Major complexity and 

possible interactions between different biological and managerial factors on dairy farms, and 

increasing number and complexity of available reproductive programs in the market (Giordano, 

2012) makes DSS well-suited for these type of unstructured problems. However, due to the 

complexity involved in culling and reproductive management the modeling has usually stayed at 

the research level. Following are some of the models that evolved into user-friendly tools for end 

users. 

One of the first tools available was for making optimal culling decisions based on the 

marginal net return calculations (Groenendaal et al., 2004). The simplicity of this model 

compared to the DP model made it possible to make a user-friendly spreadsheet model. The tool 

(EconCow or OptiCow; not found online at the time of this work) was envisioned to run fast and 

evaluate the cows based on their expected value. During the same year De Vries (2004) 

published a study for finding optimal replacement decisions in dairy cows using the DP model. A 

Few years later (2007) the resulting tool (DairyVIP1.1) was released to assist farmers, and 

currently (2015) the latest release is available (DairyVIP2.1; http://dairy.ifas.ufl.edu/tools/). The 

DairyVIP2.1 uses Microsoft Excel as the user interface, and all the complication of the DP 

model is hidden in C++ back-end codes for high performance. This is one of those tools that has 

been used by other researchers (Olynk and Wolf, 2009; Inchaisri et al., 2011, 2012; Galvão et al., 

http://dairy.ifas.ufl.edu/tools/
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2013). Cabrera (2012b) developed a simple formulation of the sub-optimal replacement 

problems in dairy cows using Markov chain simulation, which was translated into an easy to use 

spreadsheet program for economic evaluation of individual cows on the farm. The tool was later 

transferred online and has the capability to also evaluate the value of all the cows from an input 

dairy herd (http://dairymg.info/tools/cow_value_resp/). In a recent study the pattern and behavior 

of DP optimal decisions and corresponding expected value of the cows (RPO) was successfully 

learned by a machine learning algorithm to make the DP based optimal replacement decision 

faster and applicable to be used online DSS (http://dairymgt.info/tools/rpo_calc/ (Shahinfar et al., 

2014)). 

Many studies have also modeled the reproductive management of dairy herds (Olynk and 

Wolf, 2009; Inchaisri et al., 2010; Galvão et al., 2013). However, one of the first DSS for 

assessing the economic and reproductive performance of different reproductive protocols was 

developed by Giordano et al. (2011). This spreadsheet tool combined Markov chain simulation 

model to estimate the herd structure with multiple partial budgets to calculate the net present 

value of different reproductive programs (Giordano et al., 2011b). Later the spreadsheet model 

was named ReproMoney$ and was made available for end-users with an easy to use interface. 

Different versions of this DSS were released until the time that another DSS using daily Markov 

chain model was developed based on Giordano et al. (2012). This latest DSS has the ability to 

compare economic and reproductive performance of two reproductive protocols, giving the 

decision makers a better idea about the expected performance of a given change in the 

reproductive performance. More detail about this tool is covered in Chapter 7. 

http://dairymg.info/tools/cow_value_resp/
http://dairymgt.info/tools/rpo_calc/
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 Other DSS 2.5.8.

Over the years the original SimHerd model developed by Sorensen et al. (1992) has been the 

core of overall 28 papers, and over 10 theses studies (Ettema and Østergaard, 2015). SimHerd is 

a mechanistic, dynamic, and stochastic weekly simulation of dairy herds. It was evolved over the 

years and different releases of this DSS had been used in many scientific papers (Sorensen, 

1998). The evolution and subset of studies is summarized in Table 2.3. Currently, the web 

version of the SimHerd has been made available as a DSS tool for health economic analysis, 

generating added value for dairy farmers in Denmark, and great opportunity for researchers in 

different fields to test different hypothesis and better understanding of dairy systems (Ettema and 

Østergaard, 2015). 

The integrated farm system model (IFSM) is a whole-farm simulation model that links the 

dairy herd with all other processes on the farm such as machinery, crop production (Rotz et al., 

2011). This model is detailed in simulating the environmental impacts of a dairy (and beef) 

production system, including gas emissions, nitrate leaching, phosphorous runoff, and carbon 

footprint assessment of production systems. The model can also be used to determine production 

costs, income of each year by including the seasonality in the calculations. The model has been 

used mostly in whole-farm research in the scientific literature (Rotz et al., 2011). 

There are many other tools available online that could be used to plan ahead and make better 

informed on-farm decisions to achieve a better performance. For these tools one can review a 

book chapter by Cabrera (2012a) on available DSSs in the dairy industry.     
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 ABSTRACT 3.1.

The objective of this study was to determine the effect of reproductive performance on dairy 

cattle herd value. Herd value was defined as the herdôs average retention payoff (RPO). 

Individual cow RPO is the expected profit from keeping the cow compared with immediate 

replacement. First, a daily dynamic programming model was developed to calculate the RPO of 

all cow states in a herd. Second, a daily Markov chain model was applied to estimate the herd 

demographics. Finally, the herd value was calculated by aggregating the RPO of all cows in the 

herd. Cow states were described by 5 milk yield classes (76, 88, 100, 112, and 124% with respect 

to the average), 9 lactations, 750 d in milk, and 282 d in pregnancy. Five different reproductive 

programs were studied (RP1 to RP5). Reproductive program 1 used 100% timed artificial 

insemination (TAI; 42% conception rate for first TAI and 30% for second and later services) and 

the other programs combined TAI with estrus detection. The proportion of cows receiving 

artificial insemination after estrus detection ranged from 30 to 80%, and conception rate ranged 

from 25 to 35%. These 5 reproductive programs were categorized according to their 21-d 

pregnancy rate (21-d PR), which is an indication of the rate that eligible cows become pregnant 

every 21 d. The 21-d PR was 17% for RP1, 14% for RP2, 16% for RP3, 18% for RP4, and 20% 

for RP5. Results showed a positive relationship between 21-d PR and herd value. The most 

extreme herd value difference between 2 reproductive programs was $77/cow per yr for average 

milk yield (RP5 ï RP2), $13/cow per yr for lowest milk yield (RP5 ï RP1), and $160/cow per yr 
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for highest milk yield (RP5 ï RP2). Reproductive programs were ranked based on their 

calculated herd value. With the exception of the best reproductive program (RP5), all other 

programs showed some level of ranking change according to milk yield. The most dramatic 

ranking change was observed in RP1, which moved from being the worst ranked for lowest milk 

yield to the second ranked for highest milk yield. Within a reproductive program, RPO changed 

based on the stage of lactation at pregnancy. Cows getting pregnant in the early stage of lactation 

had higher RPO compared with getting pregnant later in the lactation. However, the RPO at 

calving was similar for early and late lactation pregnancies. 

Key words: retention payoff, replacement decision, optimization, simulation  

 INTRODUC TION  3.2.

Reproductive performance affects dairy herd profitability (Britt, 1985; Meadows et al., 2005; 

Olynk and Wolf, 2008). The association between reproductive performance and profitability is a 

result of effects on milk yields, available replacement heifers, and voluntary and involuntary 

culling rates (Olynk and Wolf, 2008). Some studies that have evaluated the economic impact of 

different reproductive programs using simulation models (Olynk and Wolf, 2009; Cabrera and 

Giordano, 2010; Giordano et al., 2011a,b) focused on the impact of reproductive programs alone. 

However, replacement decisions also greatly affect a herdôs profitability (van Arendonk, 1985b).  

Several biological and economic factors should be considered in order to make optimal 

replacement decisions. The most important factors are milk production, pregnancy, stage of 

lactation, and the value of a replacement heifer. Dynamic programming (DP), also known as 

Markov decision process (MDP), is an optimization technique that can handle all of these 

factors. Dynamic programming models have been developed to optimize culling decisions in 
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dairy herds over the past several decades (Smith, 1973; van Arendonk, 1985b; Kristensen, 1988; 

De Vries, 2004). The stage length of the DP models in these studies varied from 1 yr to 1 mo. 

However, farmers are making these decisions on a daily basis. Thus, the applicability of these 

models for practical farm decision making has been limited (Nielsen et al., 2010).  

Recently, Nielsen et al. (2010) used a daily stage length on DP to find the optimal 

replacement policy in dairy herds. They used a hierarchical MDP algorithm, developed by 

Kristensen (1988). Emphasis in that study was given to building a DP model to use daily milk 

yield performances based on the modern milking system in Denmark (Nielsen et al., 2010). 

Nonetheless, the Nielsen et al. (2010) study did not address the effect of different reproductive 

programs on replacement decisions and retention payoff (RPO, the expected profit from keeping 

the cow compared with immediate replacement). Hence, the need still exists to evaluate the 

combined effect of reproductive performance and optimal replacement decisions. A Markov 

chain simulation model could be a useful technique to approximate the herd structure (De Vries, 

2004) used to calculate the weighted average RPO after determining the optimal decisions for all 

cow states with a DP model.  

The main goal of this study was thus to assess the economic impact of reproductive 

performance under optimal replacement policies. The specific objectives were (1) to develop a 

daily DP model to compare different reproductive programsô herd values by using the herd 

structure found with a daily Markov chain model, and (2) to show the effect of pregnancy time 

on the RPO within specific reproductive programs. 
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 MATERIALS AND METHODS  3.3.

A value iteration method (De Vries, 2004) was used in this study to find the optimum 

replacement policies of the DP problem. After optimizing replacement decisions, a Markov chain 

model was applied to simulate the herd structure over time (De Vries, 2004; Cabrera, 2010; 

Kalantari et al., 2010). A daily Markov chain model developed by Giordano et al. (2012) was 

used to correspond to the dimensions of a daily DP model. Finally, a herd value was calculated 

by multiplying the RPO resulting from the DP model by the proportion of cows from the Markov 

chain results. This herd value thus implicitly captures all optimal replacement decisions. 

 DP Model 3.3.1.

Four state variables were included to describe cows in the DP model. Cow state was defined 

by milk class (c = 1 to 5), lactation number (l = 1 to 9), DIM (d = 1 to 750), and days in 

pregnancy (DIP; p = 0 to 282). Multiplying all these dimensions creates over 9 million total cow 

states, but not all of these states are possible because of biological or imposed constraints. 

Biological constraints indicate that DIP is always greater than DIM. Imposed constraints 

determine a voluntary waiting period (VWP) and last DIM for breeding services. After 

excluding impossible states, the total number of possible states in the calculations was >3 

million. For each state variable, several stochastic elements or transition probabilities are 

included in the model, such as the probability of abortion, pregnancy, or involuntary culling, and 

the probability of transition to different milk classes. All of these transition probabilities were 

accordingly defined on a daily basis.  

The daily DP model presented here was developed following the monthly model developed 

by De Vries (2004). However, in the current daily model, the stage variable was deleted from the 
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dimensions of some of the equations. The reason for doing this was to avoid the out-of-memory 

exception error in the Windows platform due to the large dimension of the model with daily 

stages. With this modification, the very large problem was built as a backward induction (value 

iteration) method without affecting the results. Other modification to the De Vries (2004) 

formulation was the inclusion of the transition probabilities of abortion (De Vries, 2006). The 

expected net present value (NPV) of the cash flow (Fc,l,d,p) under an optimum policy was 

 Ὂȟȟȟ ὓὥὼὑὩὩὴȟȟȟȟὙὩὴὰȟȟȟ , [1] 

Where Keepc,l,d,p = expected NPV of keeping the cow given the optimal decisions in the 

remainder stages and Replc,l,d,p = expected NPV of replacing the cow given the optimal decisions 

in the remainder stages: 

 ὙὩὴὰȟȟȟ ὛὉὒὒȟ ὊὌ, [2] 

 

 ὊὌ ὅ В ὖὌὧὙὉὠȟȟȟ ρ ὖὭὲὺȟ Ὂȟȟȟ ὖὭὲὺȟ
ὛὉὒὒȟ ὊὌ , 

[3] 

where SELLl,d = carcass value; FHt expected NPV of cash flow for a replacement heifer 

entered at stage t; C = cost of replacement heifer; PH (c) = probability of replacement heifer with 

production level c; REVc,l,d,p = net revenue for current state; Pinvl,d = probability of involuntary 

culling at each day and ŭ = discount factor. 

The expected NPV for the keep decision depends on the state of the cow. Following are the 

keep value calculations formulas:  

1. If the cow was eligible for insemination (p = 0 and ὠὡὖ Ὠ σππ) then the keep value 

depended on the insemination cost (PregCost): 
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ὑὩὩὴȟȟȟ ὙὉὠȟȟȟ ὖὶὩὫὅέίὸρ ὖὭὲὺȟ ὖὴὶὩὫ

В ὖάὰὯȟ Ὂȟȟ ȟ ρ ὖὭὲὺȟ ρ ὖὴὶὩὫВ ὖάὰὯȟ

Ὂȟȟ ȟ ὖὭὲὺȟ ὛὉὒὒȟ ὊὌ  ,

[4] 

 

Where Ppregd = daily probability of pregnancy and Pmlkc,m = daily probability of 

changing among milk classes.  

2. If the cow was open in their last possible DIM (p = 0 and d = 750) or if the cow was in 

the last day in pregnancy and last possible lactation (p = 282 and l = 9):  

 ὑὩὩὴȟȟȟ ὙὉὠȟȟȟ ὛὉὒὒȟ ὊὌ  [5] ,
 

3. If the cow was open and not eligible for insemination (p = 0 and Ὠ ὠὡὖ or σππὨ

χτω) or if the cow was pregnant (ρ ὴ ςψρ): 

 
ὑὩὩὴȟȟȟ ὙὉὠȟȟȟ ὖὶὩὫὧὬὯ ρ ὖὭὲὺȟ ρ ὖὃὦέὶ

В ὖάὰὯȟ Ὂȟȟ ȟ ρ ὖὭὲὺȟ ὖὶέὦὃὦέὶВ ὖάὰὯȟ

Ὂȟȟ ȟ ὖὭὲὺȟ ὛὉὒὒȟ ὊὌ  ,

[6] 

 

Where Pregchkp  = cost of pregnancy diagnosis and ProbAborp = probability of abortion. 

The abortion term in equation [6] was excluded for cows with less than 30 DIP. The keep 

value of entering a cow to a new lactation was calculated by adding a constant calf value 

to equation [6].  

4. Finally, if the cow was calving (p = 282), but was not in the last lactation (ὰ ω):  

 
ὑὩὩὴȟȟȟ ὙὉὠȟȟȟ ρ ὖὭὲὺȟ В ὖάὰὯȟ Ὂȟ ȟȟ

ὖὭὲὺȟ ὛὉὒὒȟ ὊὌ  ,
[7] 
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The RPO for the current stage can be calculated based on the keep and replace values 

using the following equation: 

 Ὑὖὕȟȟȟ ὑὩὩὴȟȟȟ ὙὩὴὰȟȟȟ, [8] 
 

The RPO can be either positive when the keep value is more than the replace value or 

negative when the replace value is higher than the keep value. The RPO can be used to rank 

cows for replacement decisions in a herd. Higher RPO represents a more valuable cow and RPO 

below zero means culling of the cow is preferred.  

 Markov Chain Model 3.3.2.

A daily Markov chain model
1
 (Giordano et al., 2012) was used to simulate dairy herd 

dynamics under studied reproductive performances. The Markov chain model found the herd 

structure at steady state or proportion of cows at each defined state (De Vries, 2004; Cabrera, 

2010; Kalantari et al., 2010). The Markov chain model resembled all the daily DP state 

dimensions, except the milk classes.  

 Herd Value Calculation 3.3.3.

The herd value was defined as the herdôs weighted average RPO calculated as follow: 

 

(ÅÒÄ 6ÁÌÕÅ ὴȟȟ Ὑὖὕȟȟ ȟ 

 

[9] 

Where pl,d,p = proportion of cows in each state at steady state from the Markov chain model 

and RPOc,l,d,p = RPO for each state determined by the DP model. This equation calculates the 

weighted average of RPO according to the proportion of available cows at each state. The herd 

                                                 
1
 For simple referral a brief explanation of the model is provided in Appendix 2 
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value was calculated separately for each one of the 5 different milk classes and for each one of 

the defined reproductive programs. 

 Computer Implementation 3.3.4.

The model was developed as a standalone executable program with Visual Basic.Net 2010 

(Microsoft Corp., Seattle). Input variables were in the form of spreadsheet files and results were 

gathered as comma separated files. 

 Model Parameters 3.3.5.

 Milk Production  3.3.5.1.

The incomplete gamma function (Wood, 1967) was used to estimate milk production 

throughout lactation. The Levenberg-Marquardt algorithm was used to minimize the difference 

between milk yield observations and estimated values. Factors of 5, 10, and 15% for milk 

production depression due to pregnancy were applied at 5, 6, and 7 mo in pregnancy, according 

to De Vries (2004). These monthly probabilities were converted to daily probabilities.  

 Milk Class Transition  3.3.5.2.

The 15 milk classes as described by van Arendonk (1985) were merged to 5 milk classes. The 

fitted data were set to be an average milk class (third class) and other classes were set as a factor 

to this average milk class. For example, the lowest milk class was set to 76% of the third milk 

class and the highest milk class produced 124% of the third class. In van Arendonk (1985) study, 

the repeatability of milk production was set to 0.55 monthly. Corresponding repeatability was 

empirically found to be 0.99 on a daily basis.  
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 Carcass Value and Feed Intake  3.3.5.3.

The daily BW for each state was calculated by the Korver function (Korver et al., 1985) as 

described by van Arendonk (1985). The model was parameterized to replicate the BW changes 

throughout lactation as shown in the NRC (2001) BW function. Body weight was also used to 

calculate the daily DMI. Dry matter intake was calculated according to NRC (2001) as a function 

of BW and 4% FCM. 

 Involuntary Culling and Reproductive Performance  3.3.5.4.

The daily probability of involuntary culling for every cow state defined in the model was 

calculated based on the monthly involuntary culling described by De Vries et al. (2010).  

A subset of 5 reproductive programs (RP) from Giordano et al. (2012) was studied (Table 

3.1). Originally, 19 different RP were simulated in Giordano et al. (2012) to encompass plausible 

ranges of reproductive performance observed in commercial dairy farms. They compared the 

economic and reproductive performance of a program that used 100% timed AI (TAI ) for all AI 

services with combined TAI plus estrus detection programs at different levels of estrus detection 

(Giordano et al., 2012). In these combined programs, the probability of insemination after estrus 

detection increased from 30 to 80% with 10-percentage-unit intervals at 3 conception rates of 25, 

30, and 35% (Giordano et al., 2012). Therefore, each reproductive program was represented by a 

vector of daily pregnancy probabilities depending on their levels of estrus detection and 

conception rates. It has been shown that when estrus detection is added before or between TAI 

services, a conception rate reduction of those cows inseminated to TAI is observed (Chebel et al., 

2004). A possible explanation of this reduction is that cows not detected in estrus and reaching 

TAI have lower fertility potential (Keskin et al., 2011). Thus, the baseline 40% conception rate 
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after TAI at 30% estrus detection in first service was decreased by 2 percentage units for each 

10% increase in the estrus detection. For second and subsequent services, the conception rate 

was set at 30% when the estrus detection was between 30 and 50% and at 28% when estrus 

detection was between 60 and 80% (Giordano et al., 2012).  

The 5 RP studied here were selected to represent all the range of reproductive performances 

observed in Giordano et al. (2012): the 100% TAI program and the combined programs at 2-

percentage-unit intervals of 21-d pregnancy rates (21-d PR; Ferguson and Galligan, 1999). The 

first program used 100% TAI for all AI services and the other programs combined TAI with 

estrus detection with different levels of service and conception rates, (Table 3.1). The first 

program (RP1) used Presynch-Ovsynch for the first postpartum AI and Ovsynch for second and 

subsequent AI services with a 72-d VWP and an interbreeding interval of 42 d. Combined 

programs (RP2 to RP5) used the same synchronization protocol as RP1, except that AI after 

estrus detection was added between the end of VWP (50 d) and the first TAI at 72 DIM and in 

between TAI services (Giordano et al., 2012). These 5 RP were categorized according to their 

21-d PR. The 21-d PR was 17% for RP1, 14% for RP2, 16% for RP3, 18% for RP4, and 20% for 

RP5. 

Total daily reproductive cost for each program was calculated from the costs of labor for 

estrus detection and hormone injection and the costs of hormones for synchronization of 

ovulation and AI (Giordano et al., 2012). Additionally, constant costs related to pregnancy 

diagnosis, assuming rectal palpation, were applied at 39, 67, and 221 DIP. Pregnant cows had a 

daily probability of pregnancy loss from 30 DIP to term. These probabilities varied according to 

the stage of gestation. The probability of pregnancy loss was set at 0% for the first 30 DIP, 
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12.5% from 30 to 45 DIP, 9.9% from 46 to 180 DIP, and 2% from 181 DIP to term (Giordano et 

al., 2012).  

Table 3.1. Summary of studied reproductive programs 

 First AI (%)  Second and subsequent AI (%)   

Reproductive 

Program
1
 

ED
 
before 

1
st
 TAI

2
 

CR
3
ED CR 

TAI  

 ED before 

TAI  

CR ED 

before TAI 

CR 

TAI  

21d 

pregnancy 

rate (%) 
before 

1
st
 TAI 

RP1 - - 42  - - 30 17 

RP2 70 25 32  70 25 28  14 

RP3 50 30 36  50 30 30  16 

RP4 30 35 40  30 35 30  18 

RP5 80 35 30  80 35 28  20 
1
 A subset of reproductive programs studied in Giordano et al. (2012). RP1 relied only on timed 

AI (TAI) for first AI with Presynch-Ovsynch protocol and for second and subsequent AI services 

with Ovsynch protocol, having a voluntary waiting period of 72 d and an interbreeding interval 

of 42 d; RP2 to RP5 combined TAI with estrus detection between the end of the voluntary 

waiting period (50 d) and the first TAI at 72 DIM and during the subsequent re-synchronizations. 
2
 Percentage of cows AI after estrus detection before TAI.  

3
 Conception rate of cows AI after estrus detection before TAI. 

 

 Economic Parameters.  3.3.5.5.

Calves were assumed to be sold immediately, and the revenue from them was a weighted 

average price for male and female calves ($100). The yearly veterinary cost for an average first 

lactation cow was set to $50 and increased by $5 each lactation (Groenendaal et al., 2004). These 

veterinary costs were assigned based on van Arendonk (1985): 33% to the first month of 

lactation, 11% to the second and third months in lactation, and the rest to the remainder of the 

lactation. Other inputs are summarized in Table 3.2. 
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Table 3.2. Economic parameters
1
 

Variable  Value 

Price  

Milk  $0.36 /kg 

Calf value $100/calf 

Carcass value $1.16/kg 

Replacement Heifer cost $1,300 

Veterinary cost $50 

Feed cost (Lactation) $0.17/kg 

Feed cost (Dry period)  $0.13/kg 

Annual Interest rate 10% 
1 
Same values used in Giordano et al. (2012). 

 

 RESULTS AND DISCUSSION 3.4.

 Herd Value Difference Between Reproductive Programs 3.4.1.

The herd values for 5 RP across 5 different milk yields are presented in Table 3.3. Overall, 

results showed a positive relationship between 21-d PR and herd value. At average milk yield, 

RP were ranked based on their herd values: RP5, RP4, RP1, RP3, and RP2 from highest to 

lowest. This ranking was consistent with that found with only the daily Markov chain model 

without milk classes (Giordano et al., 2012). However, Figure 3.1 reveals an interesting 

interaction between milk yield and RP. Every RP except RP5 showed some level of ranking 

change with relative milk yield. The RP5 with 20% 21-d PR was the absolute best program and 

did not show any ranking interaction with relative milk yield. The situation for the other 

analyzed RP was not stable across different milk yield classes. The most dramatic ranking 

change was observed for RP1 (100% TAI) with 17% 21-d PR. This programôs herd value 

changed from being the worst program at the lowest milk yield to the second best program at 

highest milk yield. At the highest milk yield, RP4 (18% 21-d PR) was ranked below RP1 (17% 

21-d PR).  
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The most extreme herd value difference ($/cow per yr) between 2 reproductive programs was 

$77 (RP5 ï RP2) for average milk yield, $13 (RP5 ï RP1) for 24% below average milk yield, 

and $160 (RP5 ï RP2) for 24% above average milk yield.  

The large effect of relative milk yield on herd value is shown in Table 3.3. The average herd 

value difference ($/cow per yr) between the lowest and the highest milk production across all RP 

was $1,541, and varied from $1,434 (RP2) to $1,589 (RP1). Main parameters affecting RPO in 

DP models have been well studied through sensitivity analysis (van Arendonk and Dijkhuizen, 

1985; van Arendonk, 1985b; Cardoso et al., 1999; Kalantari et al., 2010; Demeter et al., 2011). 

These studies have shown, using a monthly stage length DP, that the most important factors 

affecting RPO values are milk production, price of replacement heifer, and carcass value. The 

current study also found that the milk production is a very important factor determining the RPO. 

Table 3.3. Herd values (US$) for 5 reproductive programs across 5 relative milk yields 

 Relative milk yield
 
to average lactation curve (%) 

Reproductive 

Program
1
 

21 d 

Pregnancy 

Rate (%) 

76 88 100 112 124 

RP1
1
 17 156 374 769 1,224 1,745 

RP2
2
 14 159 376 729 1,129 1,593 

RP3
2
 16 161 385 763 1,190 1,683 

RP4
2
 18 167 395 788 1,234 1,741 

RP5
2
 20 169 410 806 1,248 1,753 

1
 RP1 relied only on TAI for first AI with Presynch-Ovsynch protocol and for second and 

subsequent AI services with Ovsynch protocol, having a voluntary waiting period of 72 d and an 

interbreeding interval of 42 d. RP2 to RP5 combined TAI with estrus detection between the end 

of voluntary waiting period (50 d) and the first TAI at 72 DIM and during the subsequent re-

synchronizations. 
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Figure 3.1. Ranking changes of 5 reproductive programs (RP) across 5 relative milk yields (%). 

Reproductive program 1 relied only on timed AI (TAI) and had a 21-d pregnancy rate of 17%; 

RP2 to RP5 combined TAI with estrus detection for 21-d pregnancy rates of 14, 16, 18, and 

20%, respectively. 
 

 

The difference in herd values between RP is attributed to the effect of RP on the herd 

structure (percentage of milking and pregnant versus dry and open cows, and distribution of 

cows between and within lactations). Figure 3.2 shows the effect of different RP on the herd 

structure as well as on herd values. Figure 3.2 illustrates the RPO multiplied by the proportion of 

cows at each state across the first 3 lactations for 3 different RP (RP1, RP2, and RP5). Hence, 

Figure 3.2 is the daily RPO value weighted by the proportion of cows at each state ($/cow per d). 

In each lactation, the graph first shows a downward trend, which follows milk production curves. 

Before parturition, milk production is the main source of cow value, which is reflected by the 

milk production curve for the average RPO values. 
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Figure 3.2. Product of retention payoff (RPO) by percentage of cows at each state in the first 3 

lactations for 3 reproductive programs (RP). Reproductive program 1 relied only on timed AI 

(TAI) and had a 21-d pregnancy rate of 17%; RP2 and RP5 combined TAI with estrus detection 

and had 14 and 20% 21-d pregnancy rates, respectively. 

 

After reaching the nadir, which is a result of the RPO decreasing through lactation and 

proportion of cows during lactations, RPO shows an upward trend because of the expected value 

of a newborn calf. Following the first peak during each lactation, a steep, dented downward trend 

continues, which is a result of 2 factors. The first factor is parturition in a timely manner, based 

on the reproductive program characteristics. For example, RP1 shows a completely discrete 

pattern every 42 d, reflecting its TAI interbreeding interval. The other 2 programs show more 

continuous patterns because of estrus detection breedings occurring in between TAI 

synchronizations. 
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The steep downward trend in Figure 3.2 is then the result of decreasing the proportion of cows 

throughout DIM along with lower RPO late in lactation. It is clear that the RP with lowest 21-d 

PR (RP2, 14%) has the greatest value in first lactation. This illustrates that RP with lower 21-d 

PR have more reproductive and non-reproductive culling. Thus, these programs have a higher 

proportion of cows in first lactation and a lower proportion of cows in second and later 

lactations, which is less profitable. When comparing RP1 (100% TAI) with RP5, it is clear that 

after the second lactation, RP1 falls behind the combined program (RP5). This can be mostly 

attributed to the high percentage of estrus detection (80%) with a high conception rate (35%) in 

the combined program (Table 3.1). Cows inseminated after estrous detection had a shorter 

interbreeding interval and greater conception rate than those cows reaching the TAI (Giordano et 

al., 2012). These differences in conception rate and estrus detection were reflected in a 3-

percentage-unit difference in 21-d PR (17 vs. 20%) between RP1 and RP5. 

 RPO Difference Within an RP 3.4.2.

Figure 3.3 shows the effect of DIM and pregnancy time on the RPO. The open cow RPO 

follows a milk curve pattern. The cow value is the highest at the beginning and gradually 

decreases through lactation. The unusually greater open RPO on the first day in lactation is a 

result of adding the value of the newborn calf on this first day. This greater open RPO is 

obscured in monthly DP models (De Vries, 2006; Kalantari et al., 2010). The pregnant cow RPO 

curve, which is equal to the difference between the RPO of pregnant and non-pregnant cow at 

the same DIM, changes based on the time in pregnancy. With increasing DIM at pregnancy, 

pregnancy value curves (pregnant RPO value) start closer to the RPO of open cows. The 

pregnant RPO value of a cow becoming pregnant at 200 DIM for second and later lactations was 

less than the RPO of open cows. For first lactation cows, this occurred at about 260 DIM (data 
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not shown). However, the final RPO of a pregnant cow at parturition was similar in spite of DIM 

at pregnancy (about $1,450). The lowest RPO value in the daily DP model developed in this 

study was ī$10, which is much less than that found with a monthly model (ī$184; Kalantari et 

al. 2010). A much lower RPO negative value was also found by the daily DP model of Nielsen et 

al. (2010). Daily RPO is the opportunity cost of keeping a cow for only one more day, and 

therefore a negative value does not accumulate for longer periods. 

 

Figure 3.3. Retention payoff (RPO) values for cows at different DIM of pregnancy in the second 

lactation for the average milk class and reproductive program RP5 (which combined timed AI 

with estrus detection and had a 21-d pregnancy rate of 20%). 

 

The trends on RPO and the relative values are more important than the actual calculated 

values (Groenendaal et al., 2004). Therefore, panel A of Figure 3.4 is presented to illustrate the 

RPO trend throughout 9 lactations for different DIM at pregnancy. It is clear that increasing DIM 

at pregnancy from 55 to 200 d changes the shape of the curves slightly. The maximum RPO 

occurred in the fourth lactation and after that, it decreased consistently until the ninth lactation, 

which was the maximum possible cow life. Similar trends were previously reported in monthly 
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models (Groenendaal et al., 2004; Kalantari et al., 2010). Generally, the RPO of cows decreased 

after parturition until the point of pregnancy. After pregnancy, the RPO showed a large jump to 

either a higher or lower value (depending on the DIM at pregnancy; Figure 3.4, panel A). The 

times of a pregnancy in first and second lactations were obvious: a vertical upward straight line 

can be seen. However, these lines were obscured after second lactation. During early pregnancy, 

the RPO usually showed a slight decrease in value. This decrease depended on the lactation and 

DIM at which the cow was pregnant. The RPO of a cow pregnant at 55 DIM decreased slightly 

in each lactation and then increased until calving. One difference when pregnancy occurred at 

200 DIM was that the RPO increased permanently after pregnancy until the time of calving 

(panel A in Figure 3.4; Figure 3.3). This difference in trend of the RPO in pregnant cows 

between early and late pregnancy was mainly a result of the effect of expected milk production 

(determined by the projected milk production curve) and involuntary culling on the net revenue. 

That is, cows becoming pregnant late in lactation will have a smaller difference between keep 

and replace values than cows becoming pregnant early in the lactation. This differential in value 

is because of events occurring in late lactation: a decrease in natural milk production and 

increase in involuntary culling, either or both of which may occur. As a result, a higher value is 

placed on getting cows pregnant late in late lactation. This translates to a permanent increase of 

RPO of pregnant cows late in lactation (Figure 3.3; Figure 3.4). Despite early or late pregnancy, 

the RPO of pregnant cows increased to parturition time because of the expected value of the calf 

for the next lactation (Figure 3.4, panels A and B). To compare the overall value of cows 

becoming pregnant at different DIM within a defined reproductive program (RP5), the 

accumulated weighted RPO for each cow state over a cowôs lifetime were calculated. 

Accumulated weighted RPO value for a cow becoming pregnant at 55 DIM was $409 and for a 
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cow becoming pregnant at 200 DIM was $333, a $76 difference between these 2 scenarios. This 

difference was a result of RPO changes only throughout lactation because the herd structure 

remained the same for these 2 scenarios. The RPO for cows becoming pregnant later in the 

lactation was always lower (De Vries, 2004).  

The RPO values for the first 3 lactations for RP5, average milk class, and 120 DIM at 

conception are shown in Figure 4, panel B. This shows the effect of pregnancy loss on RPO at 

different DIM comparing 2 scenarios of cows having pregnancy loss with one scenario of a cow 

without a pregnancy loss: one cow has a pregnancy loss at 170 DIM (50 DIP) and is successfully 

rebred 30 d later; another cow has a pregnancy loss at 220 DIM (100 DIP) and is successfully 

rebred 30 d later. The RPO of the cows losing a pregnancy decreased dramatically until the next 

successful conception. This decrease in RPO depended on the DIP at which the pregnancy loss 

happened. As in the previous case, the effect of pregnancy loss on the overall value was 

calculated as the weighted average RPO (RPO times the proportion of cows at that specific state) 

throughout 9 lactations. This value for the cow without a pregnancy loss was $370, $29 greater 

than the cow with pregnancy loss at 50 DIP (and successful rebred 30 d later) and $36 greater 

than the cow with pregnancy loss at 100 DIP (and successful rebred 30 d later). It is obvious that 

pregnancy loss had a considerable effect on the overall RPO of cows in the herd, even though a 

successful rebreeding occurred soon after. 
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Figure 3.4. Daily retention payoff (RPO) of reproductive program 5 (which combined timed AI 

with estrus detection with 21-d pregnancy rate of 20%) and average milk class under different 

scenarios. (A) Pregnancy at 55 DIM (ð), pregnancy at 200 DIM (----) during 9 lactations; (B) 

pregnancy at 120 DIM without pregnancy loss (ð), pregnancy at 120 DIM with pregnancy loss 

at 170 DIM and successfully rebred at 200 DIM (é.), and pregnancy at 120 DIM with 

pregnancy loss at 220 DIM and successfully rebred at 250 DIM (- - - -) during each of the first 3 

lactations. Labels show events: pregnancy (P), pregnancy loss (L), successfully rebred (R), and 

calving (C). 

 

 

 Implication for Dairy Farm Decision-Making and Management 3.4.3.

Our results support the notion that an opportunity exists to adjust reproductive programs 

according to milk classes and therefore according to RPO. The modeling framework could be 

used for daily decisions of assigning cows to different reproductive management groups based 
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on their RPO. This would promote more cost-effective reproductive programs and therefore 

overall improved herd value. In addition, results demonstrate an interaction among herd value, 

relative milk yield, and reproductive programs at different levels of estrus detection and TAI. 

Therefore, daily reproductive decisions might include, for example, whether to breed a heat-

detected cow or not. Cows with higher relative milk yield would benefit more from TAI 

reproductive programs, whereas cows with lower relative milk yield would be better off with 

estrus detection programs (Figure 3.1). 

Replacement decisions are being made daily on dairy farms and these decisions have a great 

effect on the herd profitability. Despite their great impact on profitability, these decisions are still 

made arbitrarily. The most important aspect of the DP model is its ability to rank cows in the 

herd based on their value. This ranking could be an important guideline to replace the least 

profitable animals in the herd. Dairy farmers, extension professionals, and farm advisers could 

take advantage of this information to help decision-making and management on dairy farms. 

Indeed, the models presented here could be incorporated into software already being used on 

dairy farms. The current DP modelôs daily stage length has the potential to provide more 

accurate RPO and to be used as a guideline in these crucial daily decisions. Moreover, the 

ranking could be used in conjunction with reproductive decisions, such as distinguishing the 

quality and type of semen according to daily RPO ranking. A possible refinement of the DP 

model could include the decision whether or not to breed eligible cows on a daily basis. The DP 

model could be modified to address a greater range of dairy farms such as organic or grazing 

farms. For example, those farms having a goal to promote the longevity of milk cows could use 

suboptimal decisions: this could be addressed by multiplying the keep value in the objective 

function (Eq. [1]) by a constant factor (Ŭ). Our default formulation assumes an Ŭ value of 1. 
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Farms willing to keep cows for longer than their economically optimal lifetime would use an 

empirical valuation of this factor >1. On the opposite end of the spectrum, farms wanting a faster 

turnover of animals because of potential herd genetic gain would have this value be <1. The 

decisions with this modification could be, to some extent, subjective, but could accommodate 

particular farm objectives.  

An important advantage of using daily stage in the models presented in this study is the ability 

to better represent farm-specific and detailed reproductive management strategies. For example, 

the models could be adjusted to farms that use natural service by modifying the probability of 

pregnancy calculations. Because the actual time of insemination is not known, stochastic 

distribution could be used to simulate possible observed patterns. Therefore, distributions could 

be applied to simulate the unknown service times. Currently, a similar methodology is 

implemented to simulate the distribution of cows showing estrus. Although DP optimal decisions 

are not sensitive to the probability of pregnancy (van Arendonk and Dijkhuizen, 1985), the daily 

Markov chain model is highly dependent on these probabilities. Additionally, the daily Markov 

chain model could be used to analyze the cost effectiveness of different pregnancy diagnosis 

techniques and their interaction with reproductive programs.  

Another application of the DP model could be in veterinary treatment decisions (Demeter et 

al., 2011). Positive RPO represents the expected value of keeping a cow one more day, and 

negative RPO is the opportunity cost of keeping this cow one more day. A positive RPO could 

be interpreted as the maximum acceptable treatment cost that could be spent in treating a cow  

(van Arendonk, 1988). On the other hand, a negative RPO shows the amount of money the farm 

is losing by keeping the cow one more day. Indeed, the daily DP model could be used by 

researchers to estimate more accurately the costs of days open, new pregnancy values, or the 
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value of pregnancy losses. Ultimately, both models (daily DP and daily Markov chain) could be 

integrated with existing models to perform whole-farm studies.  

As with any simulation and optimization model, the current models have some limitations. 

The models presented here do not include health problems, such as mastitis and lameness, or 

seasonality, which have been shown to have considerable effect on optimal decisions, herd 

structure, and herd net return (Houben et al., 1994; De Vries, 2004; Cha et al., 2010). These 

limitations could be overcome by including more state variables. However, inclusion of new 

states makes the state space of the models grow exponentially. Large DP models could become 

unsolvable. Hence, a tradeoff exists between including more state variables and decreasing stage 

length. 

 CONCLUSIONS 3.5.

A daily DP model was developed to evaluate the effect of different reproductive programs on 

herd value when coupled with a daily Markov chain model. Results showed that herd values 

were largely influenced by reproductive programs. In addition, an interaction was observed 

among the herd value, milk yields, and reproductive programs. Results support the notion that 

reproductive programs or specific reproductive events could be designed according to the 

individual cow expected production level for improved herd value. Within the same reproductive 

program, the RPO changed based on the stage of lactation at pregnancy. Cows becoming 

pregnant early in lactation had greater RPO than cows becoming pregnant later in lactation. 
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 ABSTRACT 4.1.

The objective of this study was to compare the optimal replacement decisions using two 

alternative state-of-the-art models: the optimization dynamic programming model and the 

Markov chain simulation model. Lactation, month in milk and pregnancy status were used to 

describe cow states in a herd in both models. Both models were fed with the same parameters 

and transition probabilities to make the fairest comparison possible. The cow value calculated by 

the Markov chain model was compared against the retention pay-off estimated by the dynamic 

programming model. These values were used to rank all the animals in the herd. Then, the rank 

correlation (Spearmanôs correlation) was calculated between results of both models. The overall 

correlation was 95%, which showed a strong linear relationship between rankings of animals 

from the two models. Moreover, the lowest 10% ranking cows -which are the most likely 

replacement candidates- displayed a greater correlation, 98%. Thus, the final replacement 

decisions with both models were similar. A post optimality analysis was used to explore the 

effect of the optimal replacement decisions on the herd dynamics and herd net return. The results 

showed a comparable herd structure by both models. A net return was improved $6/cow per year 

by using replacement decisions of both dynamic programming model and the Markov chain cow 

value model. 

Key words: herd economics, optimization, replacement policy, simulation 
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 INTRODUCTION  4.2.

The ability of farmers to make right decisions at the right times significantly determines the 

success of any enterprise. This success can be stated as maximizing profit. It has been shown that 

total profit is highly affected by replacement decisions (van Arendonk, 1984) and reproductive 

performance (Britt, 1985). Reproductive performance attained special attention in research 

literature (Olynk and Wolf, 2009; Cabrera and Giordano, 2010; Giordano et al., 2011b, 2012) as 

a result of its prominent economic impact on the profitability of dairy farms.  

Over the past decades several studies have analyzed the optimum replacement interval in 

dairy herds and factors that affect these decisions (Smith, 1973; van Arendonk, 1985b; 

Kristensen, 1988; De Vries, 2004; Groenendaal et al., 2004; Demeter et al., 2011; Cabrera, 

2012b). Simultaneous accounting of several biological and economic parameters is necessary to 

determine the optimum time of replacing a cow. Milk production level, pregnancy, stage of 

lactation, parity and transition probabilities such as involuntary culling, pregnancy, and abortion 

are considered the most important factors affecting replacement decisions (Kalantari et al., 

2010). Approaches that have been proposed to handle these factors and find the optimum 

replacement strategy including marginal net revenue (MNR ) (van Arendonk, 1984; Groenendaal 

et al., 2004),  dynamic programming (DP) (Smith, 1973; van Arendonk, 1985b; De Vries, 2004), 

and stochastic simulation models (Marsh et al., 1987; Dijkhuizen and Stelwagen, 1988; 

Kristensen and Thysen, 1991). The first two methods are based on the production function 

approach in which the cowôs revenue and costs are modeled during cowôs lifetime (Groenendaal 

et al., 2004). The limitation of MNR is its inability to include the variation in expected milk 

production of the present cow and subsequent replacement heifers, and the genetic gain of 

replacement heifers (Groenendaal et al., 2004). The DP technique overcomes both of these 
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limitations. However, because its complexity, the usage of DP models has been restricted to 

research analysis and not for building decision support systems for practical decision-making and 

farm management. The Monte Carlo stochastic simulation approach has been used to calculate 

the total expected net returns during next year and that value was used for ranking animals.   

Kristensen and Thysen (1991) compared the decisions being made by DP and stochastic 

simulation and reported insignificant difference between the two models.  

Recently, Cabrera (2012) used a Markov chain simulation model to find a suboptimal 

replacement policy. In brief, this method calculates the net present value for a cow and its 

potential replacement, which could be used to decide whether to keep or replace a dairy cow. 

This method does not have the complexity of DP models and overcomes the limitation of MNR 

method because it can include expected variations in the cow and replacement performances. He 

reported that trend and replacement strategies found with the newly Markov chain model would 

be similar to those found with DP models. However, such study did not include a formal 

comparison with a DP model. Consequently, the objectives of this study are to compare the 

replacement decision strategies reached with a DP and a Markov chain model; and to compare 

the effect of optimal replacement strategy on the herd structure and net revenue.  

 MATERIALS AND METHODS  4.3.

In this study we compare the outcomes of two alternative models currently used in the 

literature to offer dairy cattle replacement policies. The DP model was adapted from Kalantari et 

al. (2010) and the Markov chain model from Cabrera (2012). Both models were set to follow 

similar specifications and parameters.  
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 Modeling Specifications 4.3.1.

Three state variables were used to describe cows in both models. Cow states were defined by 

lactation number (l = 1 to 10), month in milk (m = 1 to 20), and month in pregnancy (p = 0 to 9; 

0 for open cow and 1 to 9 for pregnant). After discounting impossible states, each model had 

1,000 possible states. There were also a number of common stochastic elements for transition 

probabilities such as the probability of abortion, pregnancy, and involuntary culling. These 

transition probabilities were used to define the flow process of cows among states from one 

month to another. For example, an open cow could become pregnant in the current month or be 

involuntary culled (retired because the cow can no longer produce) in next month according to 

these probabilities (Cabrera, 2012b).  

Although both models rely on Markov chains as their underline structure, they have different 

control mechanisms. The transition probability matrix is the only governing rule that changes 

states from one stage to another in a Markov chain model.  However, there is an extra step at 

each stage on the DP model, which is to select the optimal action in the current stage for the 

specified state variables. In other words, the addition of a system control mechanism, which can 

be defined with the term Markov decision process instead of Markov chain (Gosavi, 2003).  

 Dynamic Programming Model 4.3.2.

The DP model used the ódivide and conquerô algorithm to break the multi-stage problem into 

a series of independent single-stage problems. The objective function was to maximize the net 

present value of revenues from the current cow and its potential replacements (Kalantari et al., 

2010). The objective function can be shown in terms of mathematical notion as follows: 

 Ὂȟȟ ὓὥὼὑὩὩὴȟȟȟὙὩὴὰȟȟ , [1] 
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Where Keepl,m,p = expected net present value (NPV) of keeping the cow in lactation l, month 

in milk m, and pregnancy p, given the optimal decisions in the remainder stages and Repll,m,p = 

expected net present value of replacing the cow given the optimal decisions in the remainder 

stages. The detailed formulation of calculating the keep and replace values for different states 

can be found in (Kalantari et al., 2010). Retention pay-off (RPO), which is the expected profit 

from keeping the cow compared with immediate replacement (De Vries, 2004), was calculated 

using the following equation: 

 Ὑὖὕȟȟ ὑὩὩὴȟȟ ὙὩὴὰȟȟ, [2] 

The RPO represents the value of a given cow (represented by l,m,p). The RPO can take 

positive, zero, or negative values. A positive RPO determines that keeping the cow for another 

month has a higher net return than replacing it, whereas negative RPO means that immediate 

replacement has a higher net return than keeping the cow. The RPO can be used to rank all cows 

in the herd to find out the cows that are most likely replacement candidates.  

 Markov Chain Cow Value Model 4.3.3.

A Markov chain model with monthly stage was developed to predict the herd structure at each 

stage following (Cabrera, 2012b). The NPV of the cow and its replacement is calculated at each 

stage until the model reaches the condition of ósteady stateô. Steady state is achieved when the 

proportion of cows in all states remain constant in two subsequent stages. Steady state in the 

model defined here always occurred before iteration number 150
th
 (which is the same as 150 

months in the future). Formulas for calculating the proportion of cows at each stage are described 

in detail in (Cabrera, 2012b). 
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 The NPV of the cow and its replacement were calculated by adding all economic values at 

each stage from the start of simulation until a time when the model was at steady state. Economic 

values at each stage were calculated as the sum product of the net revenue of each state and the 

corresponding herd structure. The formula, following notations in Cabrera (2012), for this 

calculation follows:  

ὔὖὠ  ὓὭ Ὂὧ ὅὭὔὙὅὧὓὧ ὙὅὧὙὧȟȟ ὅὕὡȟȟ σ 

Where  is interest rate, Mi milk income, Fc feed cost, Ci calf income, NRCc non-

reproductive culling cost, Mc Mortality cost, RCc reproductive culling cost, Rc reproductive 

cost, and COW the proportion of cows (herd structure) at each stage (i) for given state variable 

(represented by l,m,p). After finding the NPV for both the cow and its replacement the cow value 

was estimated by using the following equation: 

Cow Value = NPV Cow ï NPV Replacement ï (Replacement Cost ï Salvage Value ï Calf Value) 

                             [4] 

This cow value could then be used for deciding whether to keep or replace a cow based upon 

the sign of the value. Positive cow value (like positive RPO) means that the cow would bring 

more net revenue than its replacement and therefore the best decision would be to keep the cow. 

A negative cow value means that replacement is more profitable than keeping it. 
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 Shared Models Parameters 4.3.4.

 Milk Production 4.3.4.1.

The MilkBot function (Ehrlich, 2011) was used to fit milk production curves for the first, 

second and third and later lactations. The MilkBot predicts milk yields, Y(m), as a function of 

time after parturition or months in milk, m. Four parameters, a (scale), b (ramp), c (offset), and d 

(decay), control the shape of the lactation curves (Ehrlich, 2011). 

ὣά ὥ ρ
Ὡ

ς
Ὡ                                                                                                                   υ 

Using this function the 305 day estimated milk production (kg) were approximately 10000, 

11,000 and 12,000 for the first 3 lactations, respectively. 

 Live Body Weight 4.3.4.2.

Average monthly live weight for each state was calculated using Korver function (Korver et 

al., 1985) as described by (van Arendonk, 1984). Body weights were used to calculate the 

carcass value of the replaced cow and to estimate dry matter intake for each cow state. 

 Dry Matter Intake 4.3.4.3.

Daily dry matter intake was calculated using Spartan 2 (Vandehaar et al., 1992) equation; 

which is a function of maintenance and milk production according to month in milk, m. This 

function used body weight and 4% fat corrected milk yield as inputs. 

╓╜╘□ Ȣ ║╦□ Ȣ Ϸ╕╒╜□              [6] 

Where BW is the live body weight and 4%FCM is 4% fat corrected milk. 
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 Calf Value 4.3.4.4.

It was assumed that all 1 week old calves are sold and the value was assumed to be the 

weighted average of the value for male and female calves (Meadows et al., 2005). 

 Involuntary Culling 4.3.4.5.

Cows at every state had the risk of being involuntary culled. The risk of involuntary culling 

was increased by lactation and MIM.  Data from De Vries et al. (2010) was used to incorporate 

these transition probabilities. 

 Reproduction 4.3.4.6.

Voluntary waiting period of 60 days (time when cows are eligible for insemination) and an 

18% 21-day pregnancy rate were assumed. Cows were not bred anymore after 10 MIM (a.k.a., 

cut-off time). Pregnancy losses were included following (De Vries, 2006). 

 Economic Parameters 4.3.4.7.

Replacement heifer cost was set at US$1,300/cow. Feed price for lactating and dry cows were 

set at US$0.22/kg and US$0.18/kg, respectively (Cabrera, 2012b). Other economic variables are 

summarized in Table 4.1. 

 Computer Implementation 4.3.5.

The DP model as originally developed by Kalantari et al. (2010) was used to find the optimal 

replacement decisions. The Markov chain cow value model described by (Cabrera, 2012b) was 

re-coded as a standalone executable program with Visual Basic Net 2010 (Microsoft Corp., 

Redmond, WA). 
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Table 4.1. Economic variables (US$) used for both models: dynamic programming (DP) and 

Markov chain (MC) 

 Economic variables  Value 

  Replacement cost, $/cow 1,300 

  Carcass value, $/kg 0.38 

  Calf value, $/calf 100 

  Milk price, $/kg 0.35 

  Feed price for lactating cow, $/kg 0.22 

  Feed price for dry cows, $/kg 0.18 

  Interest rate, %/year 6 

 

 Model Comparison 4.3.6.

The most important result of these two models was the ranking of all the animals in the herd 

according to their expected cow value or RPO. Therefore, cow value (calculated from Markov 

chain model) and RPO (from DP model) were used to rank animals and compare both modelsô 

results. The Spearmanôs rank correlation test was used to compare rankings from both models. 

The ñspearmanò package (Savicky, 2009) in R statistical software (R Development Core Team, 

2011) was used to perform this statistical test.  

 Post Optimality  Analysis 4.3.7.

After finding the optimal decisions with a DP model, Markov chain models are used to find 

the herd demographics (herd structure) and economic parameters under optimal decisions. Three 

different scenarios were desgined to compare the effect of optimal decisions on the overall herd 

dynamics and herd net return. The first scenario used the Markov chain model as described in 

Cabrera (2012). The second scenario ran the Markov chain model under optimal decisions found 

by the DP model (De Vries, 2004; Kalantari et al., 2010). And the third scenario used a 2-step 

solution procedure of the Markov chain model. Negative values in the first solution were 

considered replacement decisions that were applied as optimal decisions for the second solution. 
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 Sensitivity Analysis 4.3.8.

Sensitivity analysis was later used to assess the effect of change of the main parameters on the 

accordance of the two models results. The most important factors affecting the culling decisions 

have been well studied and include milk production level and replacement cost (van Arendonk, 

1985b; van Arendonk and Dijkhuizen, 1985; Kalantari et al., 2010). Therefore, the effect of 20% 

change in milk production level and 20% change in heifer purchase price were studied. 

 RESULTS and DISCUSSION 4.4.

We first compare the similarities between the alternative methods used in this study. The cow 

value ranking accrued by solving both models had a strong linear relationship. Spearmanôs 

correlation (rho) between rankings of the 1,000 possible states was 89% (df=998, p-value < 

0.0001). This correlation factor was affected by methodological differences between models, 

mostly regarding to the last lactation. In DP model, cows in their last lactation and late MIM 

were considered to be at their end of productive life and therefore replaced regardless of their 

pregnancy status. The keep value for these cows was calculated with a different equation than 

other cow states, i.e., Equation (5) in Kalantari and Cabrera (2012), which forces replacement of 

these cows. In fact, this forced replacement of DP formulation affects sequentially all lactations, 

but has the highest impact in the last lactation, because each value is dependent on the optimal 

decision of the next cow state in the previous stage. However, in Markov chain model the value 

of the cow was calculated the same way regardless of lactation, and there was no distinction 

between cow value calculations of different lactations. Under those circumstances, last lactation 

was excluded for further analyses. After this exclusion, Spearmanôs correlation increased to 95% 

(df=898, p-value < 0.0001). The weighted average cow value - estimated by Markov chain 

model and weighted by proportion of cows in different states - corresponded to this ranking was 
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$554 and in DP model the average RPO was $542. In both models the best ranked cow (highest 

positive value) was a fresh cow in third lactation -Markov chain with US$872 and DP with $917. 

Also, the least valuable cow was shared by both models as a cow in 9
th
 lactation, last month in 

milk, and non-pregnant. DP modelôs RPO for this cow was - $44 and cow value in Markov chain 

was - $355. This negative RPO or cow value means that replacing a cow with a replacement 

heifer would be more profitable than keeping the cow one more month in the herd. The big 

difference in the magnitude of the values is due to the fact that DP follows optimal pathway and 

would not accumulate negative values. However, there is no optimal strategy in the Markov 

chain model.  

A scatter diagram of the ranking of cow values in both models for 900 states over 9 lactations 

is shown in Figure 4.1 Rankings are closer at the beginning and at the end of the diagram. The 

diagram shows a bifurcation in the rankings and it is obvious that the rank for some cows does 

not follow the same pattern in both models. The upper groups of points in the diagram 

correspond to open cows in early lactation. However, these cows are far for being candidates for 

replacement.   

The most important part of Figure 4.1, for practical decision-making and management, is the 

end tail of the graph (right top corner) that represents the lowest ranking cow states. These cow 

states with the lowest values are the most likely candidates for replacement decisions. The 

agreement (Spearmanôs correlation) between the two models was 98% on a state space 

represented by 10% of all cow states in the model. The percentage of negative values in the two 

models was not the same, i.e., 10% of all states in the DP model (corresponding to open cows 

>12 MIM in the first lactation and >10 MIM in other lactations), and 12% of all states in the 

Markov chain model (corresponding to open cows > 10 MIM in the first lactation, > 9 MIM in 
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the second lactation, and >8 MIM in later lactations). Since voluntary replacement decisions will 

not exceed 4% of the herd in one month (Fetrow et al., 2006), this result indicates that final and 

practical replacement decisions are almost identical with both models.  

 

Figure 4.1. Relationship between ranking (higher to lower) from dynamic programming model 

(DP) retention pay off (RPO) and Markov chain model (MC) cow value over nine lactations (900 

cow states) 

 

Table 4.2 shows the breakdown of the overall correlation by pregnancy status, parity number 

and stage of lactation. Generally, all the correlation factors are greater than 90%, which indicates 

strong positive relationships between modelsô results. It should also be mentioned that different 
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pregnancy status showed strong Spearmanôs correlation, which suggested that the models also 

had a high agreement based on pregnancy status. 

Table 4.2. Spearmanôs correlation (rho) between dynamic programming model (DP) retention 

pay off (RPO) and Markov chain model (MC) cow value broken down by pregnancy status, 

parity and stage of lactation with number of pair observations from models (n) at each state. 

States rho States rho 

Open (n=171) 0.995 3
rd

 Parity (n=100) 0.968 

1
st
 MIP

1
 (n=81) 0.970 4

th
 Parity (n=100) 0.964 

2
nd

 MIP (n=81) 0.976 5
th
 Parity (n=100) 0.957 

3
rd

 MIP (n=81) 0.982 6
th
 Parity (n=100) 0.954 

4
th
 MIP (n=81) 0.989 7

th
 Parity (n=100) 0.955 

5
th
 MIP (n=81) 0.994 8

th
 Parity (n=100) 0.957 

6
th
 MIP (n=81) 0.992 9

th
 Parity (n=100) 0.951 

7
th
 MIP (n=81) 0.966 Early lactation (MIM

2
=1,2) (n=18) 0.742 

8
th
 MIP (n=81) 0.881 Mid lactation (MIM=3-8) (n=243) 0.838 

9
th
 MIP (n=81) 0.916 Late lactation (MIM=9-14) (n=459) 0.978 

1
st
 Parity (n=100) 0.964 Very late lactation (MIM=15-19) (n=180) 0.995 

2
nd

 Parity (n=100) 0.973   
1
MIP=

 
month in pregnancy, 

2
MIM= Month in milk, n=number of observation with the specified 

state 

 

 Post Optimality Analysis 4.4.1.

Post optimality analyses are summarized in Table 4.3. The first scenario that used a Markov 

chain without any optimal decisions reported a net retun of $1,584/cow per year. The net return 

under optimal decisions from DP was $6/cow per year higher than the Markov chain without 

optimal decisions. As expected, this difference was mostly originated from reduced culling costs. 

Therefore, changing replacement policies according to DP results would equate in extra 

US$6/cow per year.  

The net return resulting from Markov chain with suboptimal decisions (2-step solution 

scenario) was equal to the one using the DPôs optimal decisions, although there were slight 

differences in specific economic components. Main differences between these two scenarios 
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occurred in milk income and culling costs. Culling cost in the Markov chain model was mainly 

affected by applying the cut-off at 10 MIM and also having 2% more non reprodutive culling 

than the DP optimal decisions. Although the cut-off MIM applied equally in both models, this 

cut-off in the Markov chain model indicated replacement for these cows (reproductive culling). 

However, in DP model, cut-off MIM  only meant a different calcuation of the keep value, which 

did not include reproductive service costs, (Kalantari and Cabrera, 2012). Another source of net 

return difference between the 2-step Markov chain and the DP model was higher milk sales in 

the Markov chain model. This difference was also related to the cut-off  MIM. Cows were culled 

at 10 MIM in Markov chain model, which resulted in a slightly different herd structure (more 

early lactation cows) that yielded increased total milk revenue Table 4.3. 

Table 4.3. Economic parameters and herd structure resulting of Markov chain model simulations 

under different scenarios 

1 
Markov chain simulation without optimal decisions

 

2 
Markov chain simulation with optimal decision obtained from DP

 

3 
Markov chain simulation with suboptimal decisions obtained from Markov chain 

 

Herd structure and dynamics at steady state of the 3 scenarios studied are also summarized in  

Table 4.3. The Markov chain and DP modelôs overall herd structures are not substantially 

different. However, results from the Markov chain under suboptimal decisions (2-step solution) 

showed discrepencies with results of both the original Markov chain and the DP model. The 

most important difference was a 1.44% change in the proportion of cows in the first parity in 

 Economic Parameters (US$/cow per yr)  Herd structure  
Scenario Net 

return 

Milk 

sales  

Feed 

cost 

Calf 

sales 

Cull  

cost 

Rep

cost 

 Lact 

1 %) 

Lact 2 

(%) 

Lact 3 

(%) 

Lact Ó 

4(%) 

DIM 

(d) 

Preg. 

(%) 

Lact 

(%) 

MC1 1,584 3,266 -1,402 63 -274 -69 

 

34.38 25.4 16.69 23.2 138 60.8 

 

81.22 

 
MC+DP2 1,590 3,263 -1,401 63 -265 -69  34.84 25.26 16.59 23.04 141 60.53 81.48 
 

MC+S3 
1,590 3,279 -1,400 63 -280 -71  36.28 26.27 16.46 20.99 135 60.6 81.23 
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favor of the Markov chain with suboptimal decisisions. This difference could be attributed to 

higher culling rates (mainly reproductive culling) in this scenario.  

 Sensitivity Analysis 4.4.2.

Twenty percent changes in the milk production and heifer price did not affect the overall 

correlation factor of two models, remaining greater than 90% in every scenario. The effect of 

these changes on cow value is illustrated in Figure 4.2. Because the optimal pathway is followed 

in DP model through iterations, not much negative values are accumulated and the minimum 

observed was -US$44. The dispersion of cow values in the Markov chain model was higher than 

in the DP (Figure 4.2). 

 

Figure 4.2. The cow value (US$) from dynamic programming model (DP) and Markov chain 

model (MC) for a 20% change (from baseline scenario) in heifer price and milk production 

 










































































































































































































































































