Grouping Strategies for Feeding Lactating Dairy Cattle

V.E. Cabrera
University of Wisconsin-Madison
What seems to be the problem?
Dairy farmers might be over-feeding lactating cows

Same ration in a group
No feeding groups or only a few groups

Preferred “higher” rations
Low producing animals receive more nutrients than required
What could be a possible solution?
Consider additional feeding groups for lactating cows

- Improved nutrient use efficiency
 Diet closer to cow requirements

- Less overfed animals
 Decreased overweighted cows

- Less nutrient excretion
 Decreased environmental concerns

- Lower feeding costs
 Higher milk income over feed cost
Why dairy farmers do not group more?
There could be a myriad of reasons!

Not enough expertise or knowledge available
Management constraints

Other reasons
Trying to find them

Farm facilities or equipment limitations
Physical constraints

Not enough labor or personnel
Labor constraints
Strategies for grouping lactating cows
Depend on farm and herd characteristics

Individual cow nutrient requirements
• Energy
• Protein

Number of lactating cows on the herd

Farm characteristics
Capacity to handle lactating feeding groups

Adapted from McGilliard et al., 1983; St-Pierre and Thraen, 1999
Cow nutrient requirement

Energy

Total net energy (NE_{total})
Energy required for maintenance + energy required for milk production

$$NE_{total} \text{ (Mcal)} = NE_{maintenance} + NE_{milk}$$

$NE_{maintenance}$
Function of animal body weight

$$NE_{maintenance} = 0.079 \times BW^{0.75}$$

NE_{milk}
Function of milk and fat production

$$NE_{milk} = Milk \times (0.36 + 0.0969 \times Fat\%)$$

NRC, 2001
Cow nutrient requirement

Protein

Total crude protein (CP_{total})
Protein required for maintenance + protein required for milk production

$$CP_{total} \ (g) = CP_{maintenance} + CP_{milk}$$

$CP_{maintenance}$
Function of animal body weight

$$CP_{maintenance} = 104.78 + 0.73 \times BW - 0.00015432 \times BW^2$$

CP_{milk}
Function of milk and fat production

$$CP_{milk} = Milk \times (4586 + 1036 \times Fat\%)$$

McGilliard et al., 1983
Cow feed requirement

Dry matter intake

Total dry matter intake (DMI)
Function of DIM, BW, and 4% fat corrected milk (4% FCM)

\[DMI \ (kg) = (0.372 \times 4\% \ FCM + 0.0968 \times BW^{0.75}) \times (1 - e^{(-0.192 \times \left(\frac{DIM}{7} + 3.67\right)}) \]

\[4\% \ FCM = 0.4 \times Milk + 15 \times \left(\frac{Fat\%}{100}\right) \times Milk \]

NRC, 2001
Cow body weight
Measurements are not always available

Estimation based on
- Lactation
- DIM
- Cohorts’ average BW

Korver et al., 1985 function fitted to NRC, 2001
Nutrient requirement for a group of cows

Energy and protein

Lead factor
Multiplicative factor to adjust nutrient requirements of a group

\[NE_{\text{group}} \ (\text{Mcal}) = 83^{\text{rd}} \ \text{Percentile} \ (NE_{\text{group_cows}}) \]

\[CP_{\text{group}} \ (%) = 83^{\text{rd}} \ \text{Percentile} \ (CP_{\text{group_cows}}) \]

Stallings and McGilliard, 1984
Number of groups for lactating cows
Optimal maximum number of feeding groups

Farm characteristics
• Facilities
• Equipment
• Management
• Labor

Previous findings
• Published reports
• Empirical analyses

Number of groups
• 1, 2, 3, or 4 groups

McGilliard et al., 1983; St-Pierre and Thraen, 1999
Criteria for grouping
Several criteria exist

Days after calving (DIM)
Based on stage of lactation

Fat corrected milk
Based on level of production measured as FCM

Dairy merit
Function of both FCM and BW

Cluster
Function of NE and CP.
Seems to be most efficient criterion.

McGilliard et al., 1983; St-Pierre and Thraen, 1999
Calculate the value of NE and CP
Determine diets’ cost

Value of NE and CP could be deducted
Using referee feeds

Price NE and CP
Nutrient values NE ($/Mcal) and CP ($/kg)

\[
\text{Corn} \ %CP + \text{Corn Mcal NE} = \$/kg \text{ Corn Price}
\]

\[
\text{SBM} \ %CP + \text{SBM Mcal NE} = \$/kg \text{ SBM Price}
\]

Value of NE and CP could be available on a farm
Based on farm experience
Optimize cows belonging to a feeding group
Maximize the income over feed cost

Non-linear optimization
• Iterative process
• Search for global maxima IOFC

$\text{Max}(\text{IOFC}) = \text{SUM}(\text{IOFC}_{\text{group}})$

$\text{IOFC}_{\text{group}} = \text{Milk Value} - \text{Feed Cost}$

$\text{Milk Value} = \text{SUM} (\text{Milk}_{\text{cow}}) \times \text{Milk Price}$

$\text{Feed Cost} = \text{SUM} (\text{DM}_{\text{cow}}) \times 83\% \text{ CP} \times \text{CP price}$
$+ \text{SUM} (\text{DM}_{\text{cow}}) \times 83\% \text{ NEI} \times \text{NEI price}$
Additional costs and benefits
Impacts grouping feeding strategies

Management cost
• Additional labor
• Extra management

Milk depression
• Cow social interactions
• Diet changes

Avoid costs
• Additives savings
Overall net return
Bottom line grouping strategies

Net return
+ Max (IOFC)
- Extra management
- Milk depression
+ Savings
Decision support system

Perform your own calculations

Group feeding strategies are farm specific
Every farm is different

Herd demographics change dynamically
Re-grouping is permanent

Market conditions change permanently
Might impact decisions

User-friendly application
Easy to use, still robust
Grouping strategies
For feeding lactating dairy cattle
Feeding grouping strategies

Where to find it

DairyMGT.info

Tools

Management Tools
A collection of tools and an online management tool that are user-friendly and interactive, robust, visually attractive and self-contained. All these tools provide clear step-by-step instructions and technical support available.

- Feeding
 - Feeding Strategies for Feeding Lactating Dairy Cattle
 - Feeding Evaluation
 - Feeding Management Cost
 - Dairy Extension Feed Cost Calculator
 - Dairy Feeding Bangladesh
 - Dairy Cows Feed Cost
 - Dairy Feed Milk Feed Break Even Analysis

- Reproduction
 - Economic Value of Sire Selection Programs for Dairy Heifers
 - A Reproductive Economic Analysis Tool
 - Reproductive Management, Economic Analysis
 - Economic Analysis of Sire Selection Programs for Dairy Heifers

- Technology
 - Utilization of Biophysical Tools
 - A Reproductive Economic Analysis Tool
 - Reproductive Management, Economic Analysis

- Environment
 - Dairy Feed Milk Feed Break Even Analysis
 - Dairy Cows Feed Cost
 - Dairy Feed Milk Feed Break Even Analysis
Decision support system illustration
Economic impact of grouping

<table>
<thead>
<tr>
<th></th>
<th>Current situation</th>
<th>Possible situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactating cows</td>
<td>470</td>
<td></td>
</tr>
<tr>
<td>Number groups</td>
<td>None</td>
<td>3</td>
</tr>
<tr>
<td>NE, Mcal/lb</td>
<td>0.80</td>
<td>100, 100, 270</td>
</tr>
<tr>
<td>CP, %</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>Added cost, $</td>
<td></td>
<td>$1,000/month</td>
</tr>
<tr>
<td>Milk loss</td>
<td></td>
<td>5 lb/cow</td>
</tr>
<tr>
<td>Milk loss time</td>
<td></td>
<td>4 days</td>
</tr>
<tr>
<td>Saved cost, $</td>
<td></td>
<td>$0</td>
</tr>
</tbody>
</table>
Decision support system illustration

Cluster grouping criteria

<table>
<thead>
<tr>
<th>Possible situation</th>
<th>Cow numbers</th>
<th>NE, Mcal/lb</th>
<th>CP, %</th>
<th>IOFC, $/cow/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>270</td>
<td>0.71</td>
<td>16.05</td>
<td>9.3</td>
</tr>
<tr>
<td>Group 2</td>
<td>100</td>
<td>0.65</td>
<td>14.18</td>
<td>7.2</td>
</tr>
<tr>
<td>Group 3</td>
<td>100</td>
<td>0.62</td>
<td>13.07</td>
<td>4.7</td>
</tr>
</tbody>
</table>

Herd net return, $/herd per year (x1,000)

- No grouping: 1,189
- 3 clusters: 1,336
Analysis from dairy farm records
30 Wisconsin dairy farms

No grouping vs. 3 groups
• Same size groups

Same prices for all
• $15.89/cwt milk
• $0.14337/lb CP
• $0.1174/Mcal NEI

Projected body weight
• 1,100 lb primiparous
• 1,300 lb multiparous

Cluster grouping
• 83rd percentile CP and NEI
Analysis from dairy farm records
30 Wisconsin dairy farms

<table>
<thead>
<tr>
<th>Number of lactating cows (n=30)</th>
<th>Income over Feed Cost (no grouping)</th>
<th>Income over Feed Cost (3 groups)</th>
</tr>
</thead>
<tbody>
<tr>
<td>788</td>
<td>$2,311</td>
<td>$2,707</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>$697</td>
<td>$1,059</td>
</tr>
<tr>
<td>Maximum</td>
<td>$2,967</td>
<td>$3,285</td>
</tr>
</tbody>
</table>

Increase of IOFC ($/cow per year)
- Between 7 and 52%
- Mean = $396
- Range = $161 to $580

After reasonable extra costs
- Still increased net margin of between 5 and 47%
Acknowledgement

Project support

This project is supported by Agriculture and Food Research Initiative Competitive Grant No. 2011-68004-30340 from the USDA National Institute of Food and Agriculture

United States Department of Agriculture
National Institute of Food and Agriculture
Thanks